In view of the emergence of multidrug-resistant cancer cells, there is a need for therapeutic alternatives. Keeping this in mind, the present study was aimed at evaluating the synergism between nisin (an antimicrobial peptide) and doxorubicin (DOX) against DMBA-induced skin carcinogenesis. The possible tumoricidal activity of the combination was evaluated in terms of animal bioassay observations, changes in hisotological architecture of skin tissues, in situ apoptosis assay (TUNEL assay) and in terms of oxidant and antioxidant status of the skin tissues. In vivo additive effect of the combination was evidenced by larger decreases in mean tumour burden and tumour volume in mice treated with the combination than those treated with the drugs alone. Histological observations indicated that nisin-DOX therapy causes chromatin condensation and marginalisation of nuclear material in skin tissues of treated mice which correlated well with the results of TUNEL assay wherein a marked increase in the rate of apoptosis was revealed in tissues treated with the combination. A slightly increased oxidative stress in response to the adjunct therapy as compared to dox-alone-treated group was revealed by levels of lipid peroxidation (LPO) and nitrite generation in skin tissue-treated mice. An almost similar marginal enhancement in superoxide dismutase levels corresponding with a decrease in catalase activity could also be observed in nisin + DOX-treated groups as compared to nisin and dox-alone-treated groups. These results point towards the possible use of nisin as an adjunct to doxorubicin may help in developing alternate strategies to combat currently developing drug resistance in cancer cells.
BackgroundAmoebiasis is a major public health problem in tropical and subtropical countries. Currently, metronidazole is the gold choice medication for the treatment of this disease. However, reports have indicated towards the possibility of development of metronidazole-resistance in Entamoeba strains in near future. In view of the emergence of this possibility, in addition to the associated side effects and mutagenic ability of the currently available anti-amoebic drugs, there is a need to explore newer therapeutics against this disease. In this context, the present study evaluated the amoebicidal potential of cryptdin-2 against E. histolytica.Methods/Principal FindingsIn the present study, cryptdin-2 exhibited potent in-vitro amoebicidal activity against E. histolytica in a concentration dependent manner at a minimum amoebicidal concentration (MAC) of 4 mg/L. Scanning electron microscopy as well as phase contrast microscopic investigations of cryptdin-2 treated trophozoites revealed that the peptide was able to induce significant morphological alterations in terms of membrane wrinkling, leakage of the cytoplasmic contents and damaged plasma membrane suggesting a possible membrane dependent amoebicidal activity. N-phenyl napthylamine (NPN) uptake assay in presence of sulethal, lethal as well as twice the lethal concentrations further confirmed the membrane-dependent mode of action of cryptdin-2 and suggested that the peptide could permeabilize the plasma membrane of E. histolytica. It was also found that cryptdin-2 interfered with DNA, RNA as well as protein synthesis of E. histolytica exerting the highest effect against DNA synthesis. Thus, the macromolecular synthesis studies correlated well with the observations of membrane permeabilization studies.Significance/ConclusionsThe amoebicidal efficacy of cryptdin-2 suggests that it may be exploited as a promising option to combat amoebiasis or, at least, may act as an adjunct to metronidazole and/or other available anti-amoebic drugs.
The present study was designed to evaluate the anticarcinogenic potential of Azadirachta indica against N-nitrosodiethylamine (NDEA)-induced hepatocarcinogenesis. Further, the associated histopathological and ultrastructural changes were also analyzed. Hepatic cancer model was developed by the intraperitoneal administration of NDEA to mice at weekly intervals, in successive increasing doses, for a period of 8 weeks. Aqueous A. indica leaf extract (AAILE) was administered orally at a dosage of 100 μg/g body weight thrice a week till termination of the study. A relationship between histopathological grading and chemopreventive effect of A. indica had been established at various stages of carcinogenesis. Anticancer activity of A. indica was evaluated in terms of tumor incidence, tumor multiplicity, and survival rate. A significant reduction in tumor incidence (33%), tumor multiplicity (42%), and increase in survival (34%) was observed upon administration of AAILE to NDEA-abused mice. Transmission and scanning electron microscopic investigations showed severe alterations in organelle organization, cellular arrangement, degree of differentiation, cellular metabolism, and morphology of the hepatocytes. These changes appeared to be distinctly delayed upon AAILE supplementation. The results suggest A. indica may have anticancer potential against NDEA-induced hepatic cancer.
There are substantial shortcomings in the drugs currently available for treatment of type 2 diabetes mellitus. The global diabetic crisis has not abated despite the introduction of new types of drugs and targets. Persistent unaddressed patient needs remain a significant factor in the quest for new leads in routine studies. Drug discovery methods in this area have followed developments in the market, contributing to a recent rise in the number of molecules. Nevertheless, troubling developments and fresh challenges are still evident. Recently, metformin, the most widely used first-line drug for diabetes, was found to contain a carcinogenic contaminant known as N-nitroso dimethylamine (NDMA). Therefore, purity and toxicity are also a big challenge for drug discovery and development. Moreover, newer drug classes against SGLT-2 illustrate both progress and difficulties. The same was true previously in the case of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Furthermore, researchers must study the importance of mechanistic characteristics of novel compounds, as well as exposure-related hazardous aspects of current and newly identified protein targets, in order to identify new pharmacological molecules with improved selectivity and specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.