Resistance to insecticides inAnophelesmosquitoes threatens the effectiveness of the most widespread tools currently used to control malaria. The genetic underpinnings of resistance are still only partially understood, with much of the variance in resistance phenotype left unexplained. We performed a multi-country large scale genome-wide association study of resistance to two insecticides widely used in malaria control: deltamethrin and pirimiphos-methyl. Using a bioassay methodology designed to maximise the phenotypic difference between resistant and susceptible samples, we sequenced 969 phenotyped femaleAn. gambiaeandAn. coluzziifrom ten locations across four countries in West Africa (Benin, Côte d'Ivoire, Ghana and Togo), identifying single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) segregating in the populations. The patterns of resistance association were highly multiallelic and variable between populations, with different genomic regions contributing to resistance, as well as different mutations within a given region. While the strongest and most consistent association with deltamethrin resistance came from the region aroundCyp6aa1, this resistance was based on a combination of several independent CNVs inAn. coluzzii, and on a non-CNV bearing haplotype inAn. gambiae. Further signals involved a range of cytochrome P450, mitochondrial, and immunity genes. Similarly, for pirimiphos-methyl, while the strongest signal came from the region ofAce1, more widespread signals included cytochrome P450s, glutathione S-transferases, and a subunit of the nAChR target site of neonicotinoid insecticides. The regions aroundCyp9k1and theTepfamily of immune genes were associated with resistance to both insecticide classes, suggesting possible cross-resistance mechanisms. These locally-varying, multigenic and multiallelic patterns highlight the challenges involved in genomic monitoring and surveillance of resistance, and form the basis for improvement of methods used to detect and predict resistance. Based on simulations of resistance variants, we recommend that yet larger scale studies, exceeding 500 phenotyped samples per population, are required to better identify associated genomic regions.
Studies of insecticide resistance provide insights into the capacity of populations to show rapid evolutionary responses to contemporary selection. Malaria control remains heavily dependent on pyrethroid insecticides, primarily in long lasting insecticidal nets (LLINs). Resistance in the major malaria vectors has increased in concert with the expansion of LLIN distributions. Identifying genetic mechanisms underlying high-level resistance is crucial for the development and deployment of resistancebreaking tools. Using the Anopheles gambiae 1000 genomes (Ag1000g) data we identified a very recent selective sweep in mosquitoes from Uganda which localized to a cluster of cytochrome P450 genes. Further interrogation revealed a haplotype involving a trio of mutations, a nonsynonymous point mutation in Cyp6p4 (I236M), an upstream insertion of a partial Zanzibar-like transposable element (TE) and a duplication of the Cyp6aa1 gene. The mutations appear to have originated recently in An. gambiae
Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of malaria control, but the genetics of resistance are only partially understood. We performed a large scale multi-country genome-wide association study of resistance to two widely used insecticides: deltamethrin and pirimiphos-methyl, using sequencing data from An. gambiae and An. coluzzii from ten locations in West Africa. Resistance was highly multi-genic, multi-allelic and variable between populations. While the strongest and most consistent association with deltamethrin resistance came from Cyp6aa1, this was based on several independent copy number variants (CNVs) in An. coluzzii, and on a non-CNV haplotype in An. gambiae. For pirimiphos-methyl, signals included Ace1, cytochrome P450s, glutathione S-transferases and the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes showed evidence of cross-resistance to both insecticides. These locally-varying, multi-allelic patterns highlight the challenges involved in genomic monitoring of resistance, and may form the basis for improved surveillance methods.
Information on common markers of metabolic resistance in malaria vectors from countries and regions sharing similar eco-climatic characteristics can facilitate coordination of malaria control. Here, we characterized populations of the major malaria vector Anopheles coluzzii from Sahelo-Sudanian region, spanning four sub-Saharan African countries, Nigeria, Niger, Chad and Cameroon. Genome-wide transcriptional analysis identified major genes previously implicated in pyrethroid and/or cross resistance to other insecticides, overexpressed across the Sahel. These include CYP450s, glutathione S-transferases, carboxylesterases, and cuticular proteins. Several variants identified recently as markers of resistance were found in high frequencies, including in the voltage-gated sodium channel (V402L, I940T, L995F, I1527T and N1570Y), the acetylcholinesterase-1 gene (G280S) and the CYP4J5-L43F. High frequencies of the phenotypically important chromosomal inversions, 2La, 2Rb and 2Rc were observed, with 2La alternative arrangement fixed across the Sahel, and some of the most commonly overexpressed metabolic resistance genes sitting in these inversions. Two most commonly overexpressed genes, GSTe2 and CYP6Z2 were functionally validated. Transgenic Drosophila melanogaster expressing GSTe2 exhibited extremely high DDT and permethrin resistance (mortalities < 10% in 24 h). Serial deletion of the intergenic region, to identify putative nucleotide(s) associated with GSTe2 overexpression, revealed that simultaneous insertion of adenine nucleotide and a transition (T->C), between Fork-head box L1 and c-EST putative binding sites are responsible for the high overexpression of GSTe2 in the resistant mosquitoes. Transgenic flies expressing CYP6Z2 exhibited marginal resistance towards 3-phenoxybenzyl alcohol and alpha-cypermethrin. However, significantly higher mortalities were obtained in CYP6Z2 transgenic flies compared with controls, on exposure to the neonicotinoid, clothianidin. This suggests a possible bioactivation of clothianidin into a toxic intermediate, making it an ideal insecticide against populations of An. coluzzii overexpressing CYP6Z2. These findings will facilitate regional collaborations within the Sahel region, and refine implementation strategies through refocussing interventions, improving evidence-based, cross-border policy towards local and regional malaria pre-elimination.
Background Information on common markers of metabolic resistance in malaria vectors from countries sharing similar eco-climatic characteristics can facilitate coordination of malaria control. Here, we characterized populations of the major malaria vector Anopheles coluzzii from Sahel region, spanning four sub-Saharan African countries: Nigeria, Niger, Chad and Cameroon. Results Genome-wide transcriptional analysis identified major genes previously implicated in pyrethroid and/or cross-resistance to other insecticides, overexpressed across the Sahel, including CYP450s, glutathione S-transferases, carboxylesterases and cuticular proteins. Several, well-known markers of insecticide resistance were found in high frequencies—including in the voltage-gated sodium channel (V402L, I940T, L995F, I1527T and N1570Y), the acetylcholinesterase-1 gene (G280S) and the CYP4J5-L43F (which is fixed). High frequencies of the epidemiologically important chromosomal inversion polymorphisms, 2La, 2Rb and 2Rc, were observed (~80% for 2Rb and 2Rc). The 2La alternative arrangement is fixed across the Sahel. Low frequencies of these inversions (<10%) were observed in the fully insecticide susceptible laboratory colony of An. coluzzii (Ngoussou). Several of the most commonly overexpressed metabolic resistance genes sit in these three inversions. Two commonly overexpressed genes, GSTe2 and CYP6Z2, were functionally validated. Transgenic Drosophila melanogaster flies expressing GSTe2 exhibited extremely high DDT and permethrin resistance (mortalities <10% in 24h). Serial deletion of the 5′ intergenic region, to identify putative nucleotide(s) associated with GSTe2 overexpression, revealed that simultaneous insertion of adenine nucleotide and a transition (T->C), between Forkhead box L1 and c-EST putative binding sites, were responsible for the high overexpression of GSTe2 in the resistant mosquitoes. Transgenic flies expressing CYP6Z2 exhibited marginal resistance towards 3-phenoxybenzylalcohol (a primary product of pyrethroid hydrolysis by carboxylesterases) and a type II pyrethroid, α-cypermethrin. However, significantly higher mortalities were observed in CYP6Z2 transgenic flies compared with controls, on exposure to the neonicotinoid, clothianidin. This suggests a possible bioactivation of clothianidin into a toxic intermediate, which may make it an ideal insecticide against populations of An. coluzzii overexpressing this P450. Conclusions These findings will facilitate regional collaborations within the Sahel region and refine implementation strategies through re-focusing interventions, improving evidence-based, cross-border policies towards local and regional malaria pre-elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.