Objectives:
A novel coronavirus disease (COVID-19) has been continuously spreading in almost all the districts of the state Maharashtra in India. As a part of the healthcare management development, it is very important to monitor districts affected due to novel coronavirus (COVID-19). The main objective of this study was to identify and classify affected districts into real clusters on the basis of observations of similarities within a cluster and dissimilarities among different clusters so that government policies, decisions, medical facilities (ventilators, testing kits, masks, treatment etc.), etc. could be improved for reducing the number of infected and deceased persons and hence cured cased could be increased.
Material and Methods:
In the study, we focused on COVID-19 affected districts of the state Maharashtra of India. We applied agglomerative hierarchical cluster analysis, one of data mining techniques to fulfill the objective. Elbow method was used for obtaining an optimum number of clusters for further analysis. The study of variations among various clusters for each of the variables was performed using box plots.
Results:
Results obtained from the Elbow method suggested three optimum numbers of clusters for each of the variables. For confirmed and cured cases, cluster I corresponded to the districts BI, GO, ND, PA, SI, WS, JN, CH, OS, HI, NB, JG, RT, LA, KO, AM, ST, BU, DH, AK, YTL, SN, AH, SO, AU, RG, NG, NS and PL. Cluster II corresponded to the districts TH and PU and cluster III corresponded to the district MC. For the death cases, cluster I corresponded to the districts BI, GO, ND, PA, SI, WS, JN, CH, OS, HI, NB, JG, RT, LA, KO, AM, ST, BU, DH, AK, YTL, SN, AH, SO, AU, RG, NG, NS, PL and TH. Cluster II corresponded to the district PU and cluster III corresponded to the district MC.
Conclusions:
The study showed that the district MC under cluster III was affected severely with COVID-19 which had high number of confirmed cases. A good percentage of cured cases were found in some of the districts under cluster I where six districts (GO, SI, CH, OS, SN) had 100% success rate to cure patients. It was observed that the districts TH, PU and MC under clusters II and III had severe conditions which need optimization of medical facilities and monitoring techniques like screening, closedown, curfews, lockdown, evacuations, legal actions, etc.