of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Uttar Pradesh is the densely populated state of India and is the sixth highest COVID-19 affected state with 22,904 deaths recorded on November 12, 2021. Whole-genome sequencing (WGS) is being used as a potential approach to investigate genomic evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In this study, a total of 87 SARS-CoV-2 genomes−49 genomes from the first wave (March 2020 to February 2021) and 38 genomes from the second wave (March 2021 to July 2021) from Eastern Uttar Pradesh (E-UP) were sequenced and analyzed to understand its evolutionary pattern and variants against publicaly available sequences. The complete genome analysis of SARS-CoV-2 during the first wave in E-UP largely reported transmission of G, GR, and GH clades with specific mutations. In contrast, variants of concerns (VOCs) such as Delta (71.0%) followed by Delta AY.1 (21.05%) and Kappa (7.9%) lineages belong to G clade with prominent signature amino acids were introduced in the second wave. Signature substitution at positions S:L452R, S:P681R, and S:D614G were commonly detected in the Delta, Delta AY.1, and Kappa variants whereas S:T19R and S:T478K were confined to Delta and Delta AY.1 variants only. Vaccine breakthrough infections showed unique mutational changes at position S:D574Y in the case of the Delta variant, whereas position S:T95 was conserved among Kappa variants compared to the Wuhan isolate. During the transition from the first to second waves, a shift in the predominant clade from GH to G clade was observed. The identified spike protein mutations in the SARS-CoV-2 genome could be used as the potential target for vaccine and drug development to combat the effects of the COVID-19 disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.