SARS-CoV-2, the etiologic agent of COVID-19, is a global pandemic with substantial mortality dominated by acute respiratory distress syndrome. We systematically evaluated lungs of 68 autopsies from 3 institutions in heavily hit areas (2 USA, 1 Italy). Detailed evaluation of several compartments (airways, alveolar walls, airspaces, and vasculature) was performed to determine the range of histologic features. The cohort consisted of 47 males and 21 females with a median age of 73 years (range 30-96). Co-morbidities were present in most patients with 60% reporting at least three conditions. Tracheobronchitis was frequently present, independent from intubation or superimposed pneumonia. Diffuse alveolar damage (DAD) was seen in 87% of cases. Later phases of DAD were less frequent and correlated with longer duration of disease. Large vessel thrombi were seen in 42% of cases but platelet (CD61 positive) and/or fibrin microthrombi were present at least focally in 84%. Ultrastructurally, small vessels showed basal membrane reduplication and significant endothelial swelling with cytoplasmic vacuolization. In a subset of cases, virus was detected using different tools (immunohistochemistry for SARS-CoV-2 viral spike protein, RNA in situ hybridization, lung viral culture, and electron microscopy). Virus was seen in airway epithelium and type 2 pneumocytes. IHC or in situ detection, as well as viable form (lung culture positive) was associated with the presence of hyaline membranes, usually within 2 weeks but up to 4 weeks after initial diagnosis. COVID-19 pneumonia is a heterogeneous disease (tracheobronchitis, DAD, and vascular injury), but with consistent features in three centers. The pulmonary vasculature, with capillary microthrombi and inflammation, as well as macrothrombi, is commonly involved. Viral infection in areas of ongoing active injury contributes to persistent and temporally heterogeneous lung damage.
Acute myeloid leukemia (AML) with mutated NPM1 is a newly recognized separate entity in the revised 2016 WHO classification, and is associated with a favorable prognosis. While previous studies have evaluated NPM1 in a binary fashion, we recently demonstrated a significant independent negative prognostic effect of high NPM1 mutant allele burden (VAF) at diagnosis in a cohort of de novo AML patients. Although the importance of minimal residual disease (MRD) monitoring in NPM1‐mutated AML has been well characterized, the potential relationship between diagnostic allele burden and MRD is unknown. We retrospectively evaluated for MRD at first remission (CR1). We used either next‐generation sequencing (NGS) [n = 71], and/or immunohistochemistry (IHC) for mutant NPM1 (NPM1c) [n = 60], in a subset of patients from our recently examined cohort. We identified a statistically significant positive correlation between the VAF at diagnosis, and at CR1 (Spearman r = 0.4, P = .006), and enrichment for MRD in high diagnostic VAF patients (P = .05), as previously defined. IHC‐positivity also correlated significantly with a higher median diagnostic NPM1 VAF (0.42 vs 0.39, P = .02), and with the VAF at CR1 (Spearman r = 0.7, P = .003). In multivariable analyses, both high diagnostic VAF (P = .003) and MRD (P = .02) were independent predictors of shorter event‐free survival (EFS). Our findings suggest a relationship between the NPM1 mutant allele burden at diagnosis, and the presence of MRD at first remission. Our findings support IHC as a potentially useful adjunctive tool for disease monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.