There is increasing interest among functional neurosurgeons in the potential for novel therapies to impact upon diseases beyond movement disorders and pain. A target of increasing interest is the nucleus accumbens (NAc), which has long been studied as a key brain region mediating a variety of behaviors, including reward and satisfaction. As such, focal modulation of the biology of the NAc with deep brain stimulation or novel biological therapies such as gene therapy or cell transplantation could have a major impact upon disorders such as depression and drug addiction. In order to both develop appropriate therapies and then deliver them in an effective fashion, a thorough understanding of the biology, physiology, and anatomy of the NAc is critical. Here, we review the existing literature regarding several areas critical to the development of new therapies, including the known pharmacology, physiology, and connectivity of the NAc, as well as evidence supporting the potential for various NAc surgical therapies in animal models. We then review the relevant anatomy of the NAc, with particular attention to the surgical anatomy, imaging, and targeting necessary to facilitate a proper localization and delivery of new agents to this region. The NAc is a fascinating and potentially rich target for stereotactic neurosurgical intervention, and analysis of existing information regarding all aspects of this structure should help potentiate therapeutic advances and reduce complications from future studies of neurosurgical intervention in this region for a variety of disorders.
On the basis of a retrospective analysis of 124 patients, endoscopic therapy of WON by using LAMS is safe and effective. Creation of a large and sustained cystogastrostomy or cystoenterostomy tract is effective in the drainage and treatment of WON.
Despite similar technical success rates compared to PTBD, EUS-BD results in a lower need for re-intervention, decreased rate of late adverse events, and lower pain scores, and is the sole predictor for clinical success and long-term resolution. EUS-BD should be the treatment of choice after a failed ERCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.