The National Institutes of Health (NIH) Stimulating Peripheral Activity to Relieve Conditions (SPARC) program seeks to accelerate the development of therapeutic devices that modulate electrical activity in nerves to improve organ function. SPARC-funded researchers are generating rich datasets from neuromodulation research that are curated and shared according to FAIR (Findable, Accessible, Interoperable, and Reusable) guidelines and are accessible to the public on the SPARC data portal. Keeping track of the utilization of these datasets within the larger research community is a feature that will benefit data-generating researchers in showcasing the impact of their SPARC outcomes. This will also allow the SPARC program to display the impact of the FAIR data curation and sharing practices that have been implemented. This manuscript provides the methods and outcomes of SPARClink, our web tool for visualizing the impact of SPARC, which won the Second prize at the 2021 SPARC FAIR Codeathon. With SPARClink, we built a system that automatically and continuously finds new published SPARC scientific outputs (datasets, publications, protocols) and the external resources referring to them. SPARC datasets and protocols are queried using publicly accessible REST application programming interfaces (APIs, provided by Pennsieve and Protocols.io) and stored in a publicly accessible database. Citation information for these resources is retrieved using the NIH reporter API and National Center for Biotechnology Information (NCBI) Entrez system. A novel knowledge graph-based structure was created to visualize the results of these queries and showcase the impact that the FAIR data principles can have on the research landscape when they are adopted by a consortium.
Findable, Accessible, Interoperable, and Reusable (FAIR) guiding principles tailored for research software have been proposed by the FAIR for Research Software (FAIR4RS) Working Group. They provide a foundation for optimizing the reuse of research software. The FAIR4RS principles are, however, aspirational and do not provide practical instructions to the researchers. To fill this gap, we propose in this work the first actionable step-by-step guidelines for biomedical researchers to make their research software compliant with the FAIR4RS principles. We designate them as the FAIR Biomedical Research Software (FAIR-BioRS) guidelines. Our process for developing these guidelines, presented in this manuscript, is based on a re-classification of the FAIR4RS principles and a thorough review of current practices in the field. To support researchers, we have also developed a tool that streamlines the process of implementing these guidelines. This tool is incorporated in FAIRshare, a free and open-source software application aimed at simplifying the curation and sharing of FAIR biomedical data and software through user-friendly interfaces and automation. Details about this tool are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.