Introduction Recent advances in G6PD deficiency screening and treatment are rapidly changing the landscape of radical cure of vivax malaria available for National Malaria Programs (NMPs). While NMPs await the WHO’s global policy guidance on these advances, they will also need to consider different contextual factors related to the vivax burden, health system capacity, and resources available to support changes to their policies and practices. Therefore, we aim to develop an Options Assessment Toolkit (OAT) that enables NMPs to systematically determine optimal radical cure options for their given environments and potentially reduce decision-making delays. This protocol outlines the OAT development process. Methods Utilizing participatory research methods, the OAT will be developed in four phases where the NMPs and experts will have active roles in designing the research process and the toolkit. In the first phase, an essential list of epidemiological, health system, and political & economic factors will be identified. In the second phase, 2–3 NMPs will be consulted to determine the relative priority and measurability of these factors. These factors and their threshold criteria will be validated with experts using a modified e-Delphi approach. In addition, 4–5 scenarios representing country contexts in the Asia Pacific region will be developed to obtain the expert-recommended radical cure options for each scenario. In the third phase, additional components of OAT, such as policy evaluation criteria, latest information on new radical cure options, and others, will be finalized. The OAT will be pilot-tested with other Asia Pacific NMPs in the final phase. Ethics and dissemination Human Research Ethics Committee approval has been received from the Northern Territory, Department of Health, and Menzies School of Health Research (HREC Reference Number: 2022–4245). The OAT will be made available for the NMPs, introduced at the APMEN Vivax Working Group annual meeting, and reported in international journals.
Plasmodium vivax malaria continues to cause a significant burden of disease in the Asia-Pacific, the Horn of Africa, and the Americas. In addition to schizontocidal treatment, the 8-aminoquinoline drugs are crucial for the complete removal of the parasite from the human host (radical cure). While well tolerated in most recipients, 8-aminoquinolines can cause severe haemolysis in glucose-6-phosphate dehydrogenase (G6PD) deficient patients. G6PD deficiency is one of the most common enzymopathies worldwide; therefore, the WHO recommends routine testing to guide 8-aminoquinoline based treatment for vivax malaria whenever possible. In practice, this is not yet implemented in most malaria endemic countries. This review provides an update of the characteristics of the most used G6PD diagnostics. We describe the current state of policy and implementation of routine point-of-care G6PD testing in malaria endemic countries and highlight key knowledge gaps that hinder broader implementation. Identified challenges include optimal training of health facility staff on point-of-care diagnostics, quality control of novel G6PD diagnostics, and culturally appropriate information and communication with affected communities around G6PD deficiency and implications for treatment.
Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is currently a threat to malaria elimination due to risk of primaquine-induced haemolysis in G6PD deficient individuals. The World Health Organization (WHO) recommends G6PD screening before providing primaquine as a radical treatment against vivax malaria. However, evidence regarding the prevalence and causing mutations of G6PD deficiency in Nepal is scarce. Methods: A cross-sectional, population-based, prevalence study was carried out from May to October 2016 in 12 malaria-endemic districts of Nepal. The screening survey included 4067 participants whose G6PD status was determined by G6PD Care Start ™ rapid diagnostic test and genotyping. Results: The prevalence of G6PD deficiency at the national level was 3.5% (4.1% among males and 2.1% among females). When analysed according to ethnic groups, G6PD deficiency was highest among the Janajati (6.2% overall, 17.6% in Mahatto, 7.7% in Chaudhary and 7.5% in Tharu) and low among Brahman and Chhetri (1.3%). District-wise, prevalence was highest in Banke (7.6%) and Chitwan (6.6%). Coimbra mutation (592 C>T) was found among 75.5% of the G6PD-deficient samples analysed and Mahidol (487 G>A) and Mediterranean (563 C>T) mutations were found in equal proportions in the remaining 24.5%. There was no specific geographic or ethnic distribution for the three mutations. Conclusions: This study has identified populations with moderate to high prevalence of G6PD deficiency which provides strong evidence supporting the WHO recommendations to screen G6PD deficiency at health facility level before the use of primaquine-based radical curative regimen for Plasmodium vivax.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.