This paper proposes a hybrid process modeling and optimization formalism integrating artificial neural networks (ANNs) and genetic algorithms (GAs). The resultant ANN-GA strategy has the advantage that it allows process modeling and optimization exclusively on the basis of process input-output data. In the hybrid strategy, first an ANN-based process model is developed from the input-output process data. Next, the input space of the model representing process input variables is optimized using GAs, with a view to simultaneously maximize multiple process output variables. The GAs are stochastic optimization methods possessing certain unique advantages over the commonly used gradient-based deterministic algorithms. The efficacy of the hybrid formalism has been evaluated for modeling and optimizing the zeolite (TS-1)-catalyzed benzene hydroxylation to phenol reaction whereby several sets of optimized operating conditions have been obtained. A few optimized solutions have also been subjected to the experimental verification, and the results obtained thereby matched the GA-maximized values of the three reaction output variables with a good accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.