Data mining can be viewed, in many instances, as the task of computing a representation of a theory of a model or a database, in particular by finding a set of maximally specific sentences satisfying some property. We prove some hardness results that rule out simple approaches to solving the problem.The a priori algorithm is an algorithm that has been successfully applied to many instances of the problem. We analyze this algorithm, and prove that is optimal when the maximally specific sentences are "small". We also point out its limitations. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
Discovering All Most Specific Sentences•
141We then present a new algorithm, the Dualize and Advance algorithm, and prove worst-case complexity bounds that are favorable in the general case. Our results use the concept of hypergraph transversals. Our analysis shows that the a priori algorithm can solve the problem of enumerating the transversals of a hypergraph, improving on previously known results in a special case. On the other hand, using results for the general case of the hypergraph transversal enumeration problem, we can show that the Dualize and Advance algorithm has worst-case running time that is subexponential to the output size (i.e., the number of maximally specific sentences).We further show that the problem of finding maximally specific sentences is closely related to the problem of exact learning with membership queries studied in computational learning theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.