We have designed MI-219 as a potent, highly selective and orally active small-molecule inhibitor of the MDM2-p53 interaction. MI-219 binds to human MDM2 with a Ki value of 5 nM and is 10,000-fold selective for MDM2 over MDMX. It disrupts the MDM2-p53 interaction and activates the p53 pathway in cells with wild-type p53, which leads to induction of cell cycle arrest in all cells and selective apoptosis in tumor cells. MI-219 stimulates rapid but transient p53 activation in established tumor xenograft tissues, resulting in inhibition of cell proliferation, induction of apoptosis, and complete tumor growth inhibition. MI-219 activates p53 in normal tissues with minimal p53 accumulation and is not toxic to animals. MI-219 warrants clinical investigation as a new agent for cancer treatment.cancer therapy ͉ MDM2-p53 protein-protein interaction ͉ selective toxicity to tumors ͉ small-molecule inhibitor T he tumor suppressor p53 plays a central role in the regulation of cell cycle, apoptosis, DNA repair, and senescence (1-4). Because of the prominent role played by p53 in suppressing oncogenesis (5), it is not surprising that p53 function is impaired in all human cancers. Several distinct approaches have been pursued to restore p53 function as a new cancer therapeutic strategy (6-9). Three recent studies, using unique genetic mouse models, have demonstrated that the restoration of p53 leads universally to a rapid and robust regression of established sarcomas, lymphomas, and liver tumors (10)(11)(12)(13)(14). These studies provide strong evidence that established tumors remain persistently vulnerable to p53 tumorsuppressor function and that restoration of p53 function is therefore a powerful cancer therapeutic strategy (13).In Ϸ50% of human cancers, the gene encoding p53 is either deleted or mutated, rendering the p53 protein inactive (5, 15). In the remaining cancers, p53 retains its wild-type status but its function is effectively inhibited by its primary cellular inhibitor, the human MDM2 oncoprotein (mouse double minute 2, also termed HDM2 in humans) (5,16,17). One attractive pharmacological approach to p53 reactivation is to use a small molecule to block the MDM2-p53 interaction (6)(7)(8)18). The discovery of the Nutlins provided the important proof of the concept for this approach (7). Nutlins were shown to bind to MDM2, block the MDM2-p53 interaction, and activate wild-type p53 (7,(19)(20)(21). Nutlin-3a exhibits strong anti-tumor activity in multiple xenograft mouse models of human cancer (7,19). The discovery of the Nutlins has fueled enthusiasm for the development of small-molecule MDM2 inhibitors as a new class of anticancer therapy (6,8,22,23).One critical question in the development of MDM2 inhibitors for cancer treatment is their potential toxicity to normal tissues. This concern was heightened by a recent genetic study, which showed that p53 activation in the absence of the MDM2 gene causes severe toxicity to radiosensitive normal adult mouse tissues, leading to rapid animal death (24). Previous studies on ...
Tumor suppressor p53 is an attractive cancer therapeutic target because it can be functionally activated to eradicate tumors. Direct gene alterations in p53 or interaction between p53 and MDM2 proteins are two alternative mechanisms for the inactivation of p53 function. Designing small molecules to block the MDM2-p53 interaction and reactivate the p53 function is a promising therapeutic strategy for the treatment of cancers retaining wild-type p53. This review will highlight recent advances in the design and development of small-molecule inhibitors of the MDM2-p53 interaction as new cancer therapies. A number of these small-molecule inhibitors, such as analogs of MI-219 and Nutlin-3, have progressed to advanced preclinical development or early phase cinical trials.
Potent, specific, non-peptide small-molecule inhibitors of the MDM2-p53 interaction were successfully designed. The most potent inhibitor (MI-63) has a K(i) value of 3 nM binding to MDM2 and greater than 10,000-fold selectivity over Bcl-2/Bcl-xL proteins. MI-63 is highly effective in activation of p53 function and in inhibition of cell growth in cancer cells with wild-type p53 status. MI-63 has excellent specificity over cancer cells with deleted p53 and shows a minimal toxicity to normal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.