Raageshwari gas field is a relatively deep (3000m) non-conventional volcanic reservoir with a gas column in excess of 800 meters. Gas from Raageshwari field is used to generate energy for production of waxy high pour point crude of the nearby Mangala, Bhagyam and Aishwariya Fields (which were discovered in January 2004) in Barmer Basin, Western Rajasthan India (Figure 1, 2). Extensive laboratory studies have been conducted prior the hydraulic fracturing treatments to evaluate rock mechanical properties, rock -frac fluid interaction and mineralogy. MiniFrac analysis was performed prior to the main frac treatment in order to have a better understanding of the reservoir properties prior to pumping of the main hydraulic fracturing treatment. Microseismic fracture mapping was used to determine fracture geometry and azimuth. Fracture modeling was also used to determine effective fracture geometry which was later calibrated to the Microseismic data. Different techniques have been successfully utilized to overcome extreme fracture complexity and resultant screen-outs including proppant slugs, 100 mesh and high viscosity slugs.
Waterflood is most commonly used secondary recovery mechanism in conventional sanstone reservoirs worldwide. Waterflooding assists in pressure maintenance and increases the field estimated ultimate recovery (EUR). Conformance in water injector wells plays an important role during waterflooding of a reservoir. Better conformance results in improved vertical sweep efficiency leading to higher recovery. Continuous injection of fluids into the reservoir at higher rates may create channels for preferential flow. Zones of higher permeability, leading to higher injectivity in selective zones, can also exist because of various lithological conditions and rock structures comprising of naturally occurring fractures or fissures. For injection wells, the entry of fluids into a set of perforations is governed by the quality of the perforations and the permeability of the formation at that depth. Preferential flow of injected fluids into selective pay intervals results in diminished overall sweep efficiency. (J. Vasquez, et.al., 2008). This paper discusses the use of thermally activated gels from polyacrylamides and metal chelates applied for selective reservoir matrix permeability reduction in an injector well. A low concentration, low viscosity delayed crosslinker gel system employing partially hydrolyzed polyacrylamide (PHPA) exhibiting 12-14% degree of hydrolysis level with chromium acetate as crosslinker offering delayed gelation time was used to selectively isolate one of the payzones. A non-profile retrievable (NPR) plug was installed to isolate the target interval from the rest of the pay zones to enable selective treatment of the interval using coiled tubing (CT). The fluid was customized to minimize CT friction while ensuring that the rheological properties of the fluid in the reservoir would achieve the desired diversion and allow delayed gel crosslinking mechanism assuring avoiding of gel crosslinking in CT while pumping in progress. Denser brine relative to the delayed gel density was spotted above the NPR plug to avoid gel settling on the plug for easy retrieval of the plug post-treatment. Injectivity was measured and subsequently, the treatment was placed as per design while constantly monitoring the pressures so as to qualitatively determine the effectiveness of the treatment placement. The treatment resulted in significant alteration in injectivity of the targeted zone. Post-treatment production logs confirmed an improvement in the injection conformance. Later, the zone was isolated and the bottommost zones were selectively stimulated enhancing the injection and thus improving sweep efficiency. Since the crosslinked gel system is not prone to any disintegration when in contact with acidic interventions, the treatment ensures a superior longevity of the conformance control when compared to other conventional diversion or zonal shut-off treatments. The success of the treatment substantiates that the CT deployed low viscosity, low concentration delayed crosslinked gel system application can be successfully extended to selective water shut-off applications in producer wells. The injector profile modification treatment executed offered a comprehensive solution to conformance issues enhancing volumetric sweep efficiency, pressure maintenance across depleted sands and avoiding further water cycling in producer wells.
Poor conformance is a major concern of Mangala, Bhagyam & Aishwarya (MBA) fields. The presence of high permeability streaks or thief layers between injection and production wells typically results in pre-mature water breakthrough, high water cut and deficient volumetric sweep. As a result, significant oil volumes in the reservoir may not be contacted by the injection fluid. Another concern is of low VRR (Voidage Replacement Ratio) in some of the layers due to reduced injectivity in those sands. Consequently, it has led to poor recovery from those sands. It is also a growing problem with the polymer deposition taking place in the wellbore particularly Mangala (undergoing full-field polymer flooding), leading to challenging wellbore cleanup operations. Several methods have been used in the past, both mechanical and chemical to improve the treatment fluids during stimulation. In this paper, we introduce a novel placement technique for Conformance Improvement which is practical, effective and durable as well as another tool variant that helps cleanup challenging wellbore environments. Typically, prior to the tool allowing for pin-point placement, the adjustable nozzle tool is run to ensure that the perforation and wellbore is cleaned up thoroughly with help of advanced fluid dynamics. The dynamic injection modulation (hereinafter referred to as, "DIM") tool for pin-point stimulation placement improves the distribution of injected fluid in the reservoir matrix by the process of dispersion. The tool generates an energized fluid pulse that allows fluid to be diverted away from established fluid paths. The pressure pulse, as it travels dilates the pore spaces thus propagating the wave further into the reservoir. The pin-point accuracy of placements leads to treating of reservoir layers which are left untreated during conventional stimulation treatments where viscous fingering effects dominate. As a result, injection fluid would divert into uncontacted layers to improve sweep efficiency. The other advantage of the tool is the relatively easy integration of tool with existing infrastructure. The tool is easily run with coiled tubing ("CT") with only addition of an accumulator unit on surface. This paper will document the tool physics, job design and Implementation technique for stimulation using Fluid Modulation tool as well enhanced well cleanup. Particular attention is paid to multiple injector and producer well stimulation case studies from these fields, the challenges faced, the solution proposed, and finally the results obtained. The results observed across the field with respect to injection performance is consistently greater than 75% over conventional methods used earlier. Also specifically, in scenarios of difficult fill cleanups, the advanced wellbore cleanup tool variant helped in multiple polymer and sand fill environment cleanouts over various wells over conventional methods of cleanup.
In offshore platforms, with high well density, slot recovery technique is an efficient way to target new / un-swept avenues to boost the production levels in a mature field. This leads to utilization of an appreciable length of parent bore which is an advantage to the operators globally in terms of surface facility retention and associated rig time saved. This paper discusses an actual case-study wherein dual casing exit was achieved in an offshore platform well resulting in significant time and cost savings. For the subject well the subsurface targets were quite far from the mother-bore, resulting in a plan to side-track the well at a shallow depth where double casing existed, i.e. 9-5/8″ × 13-3/8″. The options available were pilot milling and dual exit using whipstock. Unlike multi-casing exits, pilot milling is a time consuming method which requires multiple trips and involves large volume of metal swarf handling at surface. The CBL-VDL verified the presence of cement outside 9 5/8″ casing that further supported the case of dual casing exit operation. Consequently, associated risks were discussed and plans to mitigate the same were put in place. Single-trip 8-1/2″ whipstock-milling system was used to cut a window suitable for running drilling BHAs, liner, and completion equipment. The 9-5/8″ × 13-3/8″ annulus was monitored during milling and FIT test to check for any pressure communications. For well control scenario, arrangements were made for connecting the annulus to the choke manifold to ensure a closed system and thereby have provision of circulating through choke in case of gas migration in the 9-5/8″ × 13-3/8″ annulus. The window milling operation was done using sea water & intermittent Hi-vis sweeps. The window was milled successfully in a "single trip", thereby saving considerable rig time. No excess drag or held-up was observed and gauge loss on mills when pulled out of the hole was negligible. Well integrity was intact with no pressure communication in the annulus. The job was a successful one that led to finishing the well within the planned time and thereby, led to timely release of the jack up rig before the onset of adverse weather conditions. Multi-casing exit technology in two or three casing strings opens the multi-level advantages to well intervention techniques especially in situations where the wells are old with limited access due to presence of fish or other restrictions that makes the deeper section of the well non-usable. Such sections can be avoided by sidetracking at a shallow depth and also provides an opportunity to access targets that are quite far from the original mother-bore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.