Biological networks play a paramount role in our understanding of complex biological phenomena and metabolite-metabolite association networks are now commonly used in metabolomics applications. In this study we evaluate the performance of several network inference algorithms (PCLRC, MRNET, GENIE3, TIGRESS and modifications of the MR-NET algorithm, together with standard Pearson's and Spearman's correlation) using as a test case data generated using a dynamic metabolic model describing the metabolism of arachidonic acid (consisting of 83 metabolites and 131 reactions) and simulation individual metabolic profiles of 550 subjects. The quality of the reconstructed metabolite-metabolite association networks was assessed against the original metabolic network taking into account different degrees of association among the metabolites and different sample size and
Metabolite differential connectivity analysis has been successful in investigating potential molecular mechanisms underlying different conditions in biological systems. Correlation and Mutual Information (MI) are two of the most common measures to quantify association and for building metabolite—metabolite association networks and to calculate differential connectivity. In this study, we investigated the performance of correlation and MI to identify significantly differentially connected metabolites. These association measures were compared on (i) 23 publicly available metabolomic data sets and 7 data sets from other fields, (ii) simulated data with known correlation structures, and (iii) data generated using a dynamic metabolic model to simulate real-life observed metabolite concentration profiles. In all cases, we found more differentially connected metabolites when using correlation indices as a measure for association than MI. We also observed that different MI estimation algorithms resulted in difference in performance when applied to data generated using a dynamic model. We concluded that there is no significant benefit in using MI as a replacement for standard Pearson’s or Spearman’s correlation when the application is to quantify and detect differentially connected metabolites.
Networks and network analyses are fundamental tools of systems biology. Networks are built by inferring pair-wise relationships among biological entities from a large number of samples such that subject-specific information is lost. The possibility of constructing these sample (individual)-specific networks from single molecular profiles might offer new insights in systems and personalized medicine and as a consequence is attracting more and more research interest. In this study, we evaluated and compared LIONESS (Linear Interpolation to Obtain Network Estimates for Single Samples) and ssPCC (single sample network based on Pearson correlation) in the metabolomics context of metabolite–metabolite association networks. We illustrated and explored the characteristics of these two methods on (i) simulated data, (ii) data generated from a dynamic metabolic model to simulate real-life observed metabolite concentration profiles, and (iii) 22 metabolomic data sets and (iv) we applied single sample network inference to a study case pertaining to the investigation of necrotizing soft tissue infections to show how these methods can be applied in metabolomics. We also proposed some adaptations of the methods that can be used for data exploration. Overall, despite some limitations, we found single sample networks to be a promising tool for the analysis of metabolomics data.
These infections are infrequent, but are associated with a significant health burden due to high mortality and risk of severe long-term disability as a consequence of extensive tissue loss or amputations (3)(4)(5). The progression of the disease is rapid, and early identification is therefore pivotal for improving the prognosis of affected patients. Currently, the initial diagnosis of NSTI is challenging due to the often vague symptoms during early stages, a heterogeneous patient group, and lack of specific diagnostic tools (6), which lead to misdiagnoses of NSTI in many cases (7). Still, doctors are advised that in case of NSTI suspicion, patients should be referred to surgical evaluation immediately (8). Previous efforts to improve the diagnosis of NSTIs led to the proposal of the Laboratory Risk Indicator for Necrotizing Fasciitis (LRINEC) CONCLUSIONS. This study identifies predictive biomarkers for NSTI clinical phenotypes of potential value for diagnostic, prognostic, and therapeutic approaches in NSTIs. TRIAL REGISTRATION. ClinicalTrials.gov NCT01790698.
Abstract Background Necrotising soft tissue infections (NSTIs) are rapidly progressing bacterial infections usually caused by either several pathogens in unison (polymicrobial infections) or Streptococcus pyogenes (mono-microbial infection). These infections are rare and are associated with high mortality rates. However, the underlying pathogenic mechanisms in this heterogeneous group remain elusive. Methods In this study, we built interactomes at both the population and individual levels consisting of host-pathogen interactions inferred from dual RNA-Seq gene transcriptomic profiles of the biopsies from NSTI patients. Results NSTI type-specific responses in the host were uncovered. The S. pyogenes mono-microbial subnetwork was enriched with host genes annotated with involved in cytokine production and regulation of response to stress. The polymicrobial network consisted of several significant associations between different species (S. pyogenes, Porphyromonas asaccharolytica and Escherichia coli) and host genes. The host genes associated with S. pyogenes in this subnetwork were characterised by cellular response to cytokines. We further found several virulence factors including hyaluronan synthase, Sic1, Isp, SagF, SagG, ScfAB-operon, Fba and genes upstream and downstream of EndoS along with bacterial housekeeping genes interacting with the human stress and immune response in various subnetworks between host and pathogen. Conclusions At the population level, we found aetiology-dependent responses showing the potential modes of entry and immune evasion strategies employed by S. pyogenes, congruent with general cellular processes such as differentiation and proliferation. After stratifying the patients based on the subject-specific networks to study the patient-specific response, we observed different patient groups with different collagens, cytoskeleton and actin monomers in association with virulence factors, immunogenic proteins and housekeeping genes which we utilised to postulate differing modes of entry and immune evasion for different bacteria in relationship to the patients’ phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.