Vacant frequency bands are used in cognitive radio (CR) by incorporating the spectrum sensing (SS) technique. Spectrum sharing plays a central role in ensuring the effectiveness of CR applications. Therefore, a new multi-stage detector for robust signal and spectrum sensing applications is introduced here. Initially, the sampled signal is subjected to SNR estimation by using a convolutional neural network (CNN). Next, the detection strategy is selected in accordance with the predicted SNR levels of the received signal. Energy detector (ED) and singular value-based detector (SVD) are the solutions utilized in the event of high SNR, whilst refined non-negative matrix factorization (MNMF) is employed in the case of low SNR. CNN weights are chosen via the Levy updated sea lion optimization (LU-SLNO) algorithm inspired by the traditional sea lion optimization (SLNO) approach. Finally, the outcomes of the selected detectors are added, offering a precise decision on spectrum tenancy and existence of the signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.