The human intestine hosts diverse microbial communities that play a significant role in maintaining gut-skin homeostasis. When the relationship between gut microbiome and the immune system is impaired, subsequent effects can be triggered on the skin, potentially promoting the development of skin diseases. The mechanisms through which the gut microbiome affects skin health are still unclear. Enhancing our understanding on the connection between skin and gut microbiome is needed to find novel ways to treat human skin disorders. In this review, we systematically evaluate current data regarding microbial ecology of healthy skin and gut, diet, pre- and probiotics, and antibiotics, on gut microbiome and their effects on skin health. We discuss potential mechanisms of the gut-skin axis and the link between the gut and skin-associated diseases, such as psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. This review will increase our understanding of the impacts of gut microbiome on skin conditions to aid in finding new medications for skin-associated diseases.
Background. Worldwide, Neisseria gonorrhoeae-related sexually transmitted infections (STIs) continue to be of significant public health concern. This obligate-human pathogen has developed a number of defenses against both innate and adaptive immune responses during infection, some of which are mediated by the pathogen’s proteins. Hence, the uncharacterized proteins of N. gonorrhoeae can be annotated to get insight into the unique functions of this organism related to its pathogenicity and to find a more efficient therapeutic target. Methods. In this study, a hypothetical protein (HP) of N. gonorrhoeae was chosen for analysis and an in-silico approach was used to explore various properties such as physicochemical characteristics, subcellular localization, secondary structure, 3D structures, and functional annotation of that HP. Finally, a molecular docking analysis was performed to design an epitope-based vaccine against that HP. Results. This study has identified the potential role of the chosen HP of N. gonorrhoeae in plasmid transfer, cell cycle control, cell division, and chromosome partitioning. Acidic nature, thermal stability, cytoplasmic localization of the protein, and some of its other physicochemical properties have also been identified through this study. Molecular docking analysis has demonstrated that one of the T cell epitopes of the protein has a significant binding affinity with the human leukocyte antigen HLA-B ∗ 15 : 01. Conclusions. The in-silico characterization of this protein will help us understand molecular mechanism of action of N. gonorrhoeae and get an insight into novel therapeutic identification processes. This research will, therefore, enhance our knowledge to find new medications to tackle this potential threat to humankind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.