The structural diversity of carbohydrates presents a major challenge for glycobiology and the analysis of glycoconjugates. Mass spectrometry has become a primary tool for glycan analysis thanks to its speed and sensitivity, but the information content regarding the glycan structure of protonated glycoconjugates is hindered by the inability to differentiate linkage and stereoisomers. Here, we examine a variety of protonated carbohydrate structures by gas-phase hydrogen/deuterium exchange (HDX) to discover that the exchange rates are distinct for isomeric carbohydrates with even subtle structural differences. By incorporating an internal exchange standard, HDX could effectively distinguish all linkage and stereoisomers that were examined and presents a mass spectrometry-based approach for glycan structural analysis with immense potential.
Structural characterization of carbohydrates by mass spectrometry necessitates a detailed understanding of their gas phase behavior, particularly for protonated carbohydrates that can undergo complex structural rearrangements during fragmentation. Here we utilize tandem mass spectrometry, isotopic labeling, gas-phase hydrogen/deuterium exchange, and ion mobility measurements to characterize structures of the various product ions of protonated N-acetylhexosamines. Following the facile loss of the reducing end hydroxyl group, we identify two primary fragmentation pathways. Detailed mapping of each step in the fragmentation pathway provides new insight into the mechanisms that drive collision-induced dissociation of protonated carbohydrates. Several of the smaller fragment ions are mixtures of structural isomers, and the relative distributions of these structures reveals information about the stereochemistry of the precursor molecule.
Carbohydrates are among the most complex class of biomolecules, and even subtle variations in their structures are attributed to diverse biological functions. Mass spectrometry has been essential for large scale glycomics and glycoproteomics studies, but the gas-phase structures and sometimes anomalous fragmentation properties of carbohydrates present longstanding challenges. Here we investigate the gas-phase properties of a panel of isomeric protonated disaccharides differing in their linkage configurations. Multiple conformations were evident for most of the structures based on their fragment ion abundances by tandem mass spectrometry, their ion mobilities in several gases, and their deuterium uptake kinetics by gas-phase hydrogen− deuterium exchange. Most notably, we find that the properties of the Y-ion fragments are characteristically influenced by the precursor carbohydrate's linkage configuration. This study reveals how protonated carbohydrate fragment ions can retain "linkage memory" that provides structural insight into their intact precursor.
Mass spectrometry (MS) has become a primary tool for identifying and quantifying biological molecules. In combination with other orthogonal techniques, such as gas-phase hydrogen/ deuterium exchange (gHDX), MS is also capable of probing the structure of ions. However, gHDX kinetics can depend strongly on many factors, including laboratory temperature, instrumental conditions, and instrument platform selection. These effects can lead to high variability with gHDX measurements, which has hindered the broader adoption of gHDX for structural MS. Here we introduce an approach for standardizing gHDX measurements using co-sampled standards. Quantifying the exchange kinetics for analytes relative to the exchange kinetics of the standards results in greater accuracy and precision than the underlying absolute measurements. The standardization was found to be effective for several types of analytes including small molecules and intact proteins. A subset of analytes showed deviations in their standardized exchange profiles that are attributed to field heating and the concomitant conformational isomerization. Inclusion of helium during the gHDX process for collisional cooling helps mitigate such variations in exchange kinetics related to ion heating. We anticipate that the outcomes of this research will enable the broader use of gHDX in MS-based workflows for molecular identification and isomer differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.