Covalent conjugation of polyethylene glycol (PEG) molecules to biopharmaceutical molecules is known to increase the pharmacological and medicinal characteristics of proteins and other big molecules and has been utilized effectively in 12 authorized medications. PEG reagents with straight and branched chains up to 40 kDa were utilized with a variety of PEG derivatives with varied linker chemistries. This article discusses the characteristics of PEG, the history and evolution of PEGylation chemistry, and examples of PEGylated pharmaceuticals with a proven track record. They prefer to employ bigger PEG polymers and complicated PEG structures, although they use extremely pure and well-characterized PEG reagents. The preclinical toxicity data for PEG in PEGylated biologics that have been authorized are summarised. Microscopically detected cell vacuolization in phagocytes, which is connected to the biological function of absorption and elimination of particles and macromolecules from blood and tissues. It's possible. Side effects in toxicity tests typically relate to the active moiety of the medicine, not the PEG moiety, according to experience with commercially available PEGylated pharmaceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.