Received Month X, XXXX; revised Month X, XXXX; accepted Month X, XXXX;posted Month X, XXXX (Doc. ID XXXXX); published Month X, XXXX Stimulated emission depletion microscopy inspired direct laser writing (STED-DLW) processes can offer diffraction-unlimited fabrication of 3D-structures, not possible with traditional electron-beam or optical lithography. We propose a hyperbolic metamaterial for fabrication with STED-DLW. First, we design meandering wire structures with three different magnetic dipoles which can be excited under different incidences of light. Then, based on effective parameters corresponding to normal incidence and lateral incidence, we find that the hyperbolic dispersion relation for five-layer structure appears between 15THz to 20 THz. Finally, we investigate the influence of imaginary parts of the effective parameters on the metamaterial dispersion. The proposed metamaterial structure has also potential for three-dimensionally isotropic permeability despite geometric anisotropy.
Previous work has shown that high-temperature short-term spike thermal annealing of hydrogenated amorphous silicon (a-Si:H) photovoltaic thermal (PVT) systems results in higher electrical energy output. The relationship between temperature and performance of a-Si:H PVT is not simple as high temperatures during thermal annealing improves the immediate electrical performance following an anneal, but during the anneal it creates a marked drop in electrical performance. In addition, the power generation of a-Si:H PVT depends on both the environmental conditions and the Staebler-Wronski Effect kinetics. In order to improve the performance of a-Si:H PVT systems further, this paper reports on the effect of various dispatch strategies on system electrical performance. Utilizing experimental results from thermal annealing, an annealing model simulation for a-Si:H-based PVT was developed and applied to different cities in the U. S. to investigate potential geographic effects on the dispatch optimization of the overall electrical PVT systems performance and annual electrical yield. The results showed that spike thermal annealing once per day maximized the improved electrical energy generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.