A multimode, dual functional nanomaterial, CNTs-Ag2S, comprised of carbon nanotubes (CNTs) and silver sulfide (Ag2S) nanoparticles, was prepared through the facile hydrothermal process. Before the deposition of Ag2S nanoparticles, hydrophobic CNTs were modified to become hydrophilic through refluxing with a mixture of concentrated nitric and sulfuric acids. The oxidized CNTs were employed to deposit the Ag2S nanoparticles for their efficient immobilization and homogenous distribution. The CNTs-Ag2S could adsorb toxic Cd(II) and completely degrade the hazardous Alizarin yellow R present in water. The adsorption efficiency of CNTs-Ag2S was evaluated by estimating the Cd(II) adsorption at different concentrations and contact times. The CNTs-Ag2S could adsorb Cd(II) entirely within 80 min of the contact time, while CNTs and Ag2S could not pursue it. The Cd(II) adsorption followed the pseudo-second-order, and chemisorption was the rate-determining step in the adsorption process. The Weber−Morris intraparticle pore diffusion model revealed that intraparticle diffusion was not the sole rate-controlling step in the Cd(II) adsorption. Instead, it was contributed by the boundary layer effect. In addition, CNTs-Ag2S could completely degrade alizarin yellow R in water under the illumination of natural sunlight. The Langmuir-Hinshelwood (L-H) model showed that the degradation of alizarin yellow R proceeded with pseudo-first-order kinetics. Overall, CNTs-Ag2S performed as an efficient adsorbent and a competent photocatalyst.
An efficient adsorbent, CNTs–PAMAM–Ag, was prepared by grafting fourth-generation aromatic poly(amidoamine) (PAMAM) to carbon nanotubes (CNTs) and successive deposition of Ag nanoparticles. The FT–IR, XRD, TEM and XPS results confirmed the successful grafting of PAMAM onto CNTs and deposition of Ag nanoparticles. The absorption efficiency of CNTs–PAMAM–Ag was evaluated by estimating the adsorption of two toxic contaminants in water, viz., Pb(II) and As(III). Using CNTs–PAMAM–Ag, about 99 and 76% of Pb(II) and As(III) adsorption, respectively, were attained within 15 min. The controlling mechanisms for Pb(II) and As(III) adsorption dynamics were revealed by applying pseudo-first and second-order kinetic models. The pseudo-second-order kinetic model followed the adsorption of Pb(II) and As(III). Therefore, the incidence of chemisorption through sharing or exchanging electrons between Pb(II) or As(III) ions and CNTs–PAMAM–Ag could be the rate-controlling step in the adsorption process. Further, the Weber–Morris intraparticle pore diffusion model was employed to find the reaction pathways and the rate-controlling step in the adsorption. It revealed that intraparticle diffusion was not a rate-controlling step in the adsorption of Pb(II) and As(III); instead, it was controlled by both intraparticle diffusion and the boundary layer effect. The adsorption equilibrium was evaluated using the Langmuir, Freundlich, and Temkin isotherm models. The kinetic data of Pb(II) and As(III) adsorption was adequately fitted to the Langmuir isotherm model compared to the Freundlich and Temkin models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.