Metoposaurids are representatives of the extinct amphibian clade Temnospondyli, found on almost every continent exclusively in the Late Triassic deposits. Osteohistologically, it is one of the best-known temnospondyl groups, analyzed with a wide spectrum of methods, such as morphology, morphometry, bone histology or computed modelling. The least known member of Metoposauridae is Panthasaurus maleriensis from the Pranhita-Godavari basin in Central India, being geographically the most southern record of this family. For the first time the bone histology of this taxon was studied with a focus on the intraspecific variability of the histological framework and the relationship between the observed growth pattern and climatic and/or environmental conditions. The studied material includes thin-sections of five long bones, a rib, an ilium and an intercentrum belonging most likely to eight individuals ranging from different ontogenetic stages. All bones have a large medullary region with progressively increasing remodeling, surrounded by a lamellar-zonal tissue type. The primary cortex consists of parallel-fibered matrix showing various degrees of organization, less organized collagen fibers in the zones and higher organized in the annuli. Growth marks occur in the form of alternating zones and annuli in every bone except the ilium and the intercentrum. The vascularity becomes less dense towards the outermost cortex in all sampled limb bones. Towards the outermost cortex the zone thickness is decreasing, in contrast to the avascular annuli, that become thicker or are of the same thickness. The growth pattern of P. maleriensis is uniform and represents changes in ontogenetic development. Multiple resting lines are prominent in the outer annuli of the limb bones and the rib and they presumably indicate climatic and environmental influence on the growth pattern. Therefore, a prolonged phase of slowed-down growth occurred during the unfavorable phase, but a complete cessation of growth indicated by Lines of Arrested Growth (LAGs) is not recorded in the studied samples. Based on the histological framework we conclude that the climate had an impact on the growth pattern. As we do not see any LAGs in the Indian metoposaurid, we assume that the local climate was relatively mild in India during the Late Triassic. A similar prolonged phase of slowed down growth without the occurrence of LAGs was observed in Metoposaurus krasiejowensis from the Late Triassic of Krasiejów (Poland). This is in contrast to Moroccan metoposaurid Dutuitosaurus ouazzoui from the Late Triassic of Argana Basin, where LAGs are regularly deposited throughout ontogeny indicating most likely harsher climatic conditions.
A new, partially preserved skull of chigutisaurid amphibian (temnospondyli) has been reported for the first time from the Late Triassic Tiki Formation of India. Chigutisaurids are now known to occur in Australia’s Early and Late Triassic, the Late Triassic in India, Argentina, and Brazil, the Jurassic of South Africa and Australia, and the Cretaceous of Australia. In India, the first appearance of chigutisaurids marks the Carnian—middle Carnian/Norian Boundary. This work also attempts to correlate, again for the first time, the advent of chigutisaurids and the occurrence of Carnian Pluvial Episodes (CPE) in the Late Triassic Maleri and Tiki Formation of Central India. The new specimen belongs to the genus Compsocerops prevalent in the Late Triassic Maleri Formation occurring 700 km south. However, the chigutisaurid specimen recovered from the Tiki Formation is a new species when compared to that of the Maleri Formation. It has the presence of an inward curved process of the quadratojugal as opposed to the straight downward trending process of the quadratojugal, the presence of vomerine foramen, shorter and wider interpterygoid vacuities, wider subtemporal vacuities, and the base of the interpterygoid vacuities at the same level with the base of the subtemporal vacuity. It proves that the Tiki Formation is coeval with the Lower Maleri Formation and a part of Upper Maleri.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.