Due to the intriguing anisotropic optical and electrical properties, low‐symmetry 2D materials are attracting a lot of interest both for fundamental studies and fabricating novel electronic and optoelectronic devices. Identifying new promising low‐symmetry 2D materials will be rewarding toward the evolution of nanoelectronics and nano‐optoelectronics. In this work, germanium diarsenide (GeAs2), a group IV–V semiconductor with novel low‐symmetry puckered structure, is introduced as a favorable highly anisotropic 2D material into the rapidly growing 2D family. The structural, vibrational, electrical, and optical in‐plane anisotropy of GeAs2 is systematically investigated both theoretically and experimentally, combined with thickness‐dependent studies. Polarization‐sensitive photodetectors based on few‐layer GeAs2 exhibit highly anisotropic photodetection behavior with lineally dichroic ratio up to ≈2. This work on GeAs2 will excite interests in the less exploited regime of group IV–V compounds.
Van der Waals (vdW) dielectrics such as hBN are widely used to preserve the intrinsic properties of twodimensional (2D) semiconductors and support the fabrication of high-performance 2D devices. This is fundamentally attributed to their dangling-bond-free surface, carrying far lower density of charged scattering sources and trap states with respect to the conventional dielectrics (SiO 2 etc.). However, their wafer-scale fabrication and compatible integration with 2D semiconductors remain cumbersome, giving rise to the di culties in scalable fabrication of high-performance 2D devices. Here we report a high-κ vdW dielectric (ε r =11.5) composed of inorganic molecular crystal (IMC) Sb 2 O 3 , allowing for large-scale fabrication and facile integration via standard thermal evaporation process thanks to its particular crystal structure. Similarly, our vdW dielectric also supports remarkably improved 2D devices with respect to the typical conventional dielectric SiO 2 . The monolayer MoS 2 eld effect transistors (FET) supported by our vdW dielectric exhibits high on/off ratio (10 8 ), greatly enhanced electron mobility (from 20 to 80 cm 2 /Vs) and reduced transfer-curve hysteresis over an order of magnitude. Our results may open a new avenue towards compatible fabrication of vdW dielectrics using IMCs and lead to the scalable fabrication of high-performance 2D devices.
P‐n junctions based on two dimensional (2D) van der Waals (vdW) heterostructure are one of the most promising alternatives in next‐generation electronics and optoelectronics. By choosing different 2D transition metal dichalcogenides (TMDCs), the p‐n junctions have tailored energy band alignments and exhibit superior performance as photodetectors. The p‐n diodes working at reverse bias commonly have high detectivity due to suppressed dark current but suffer from low responsivity resulting from small quantum efficiency. Greater build‐in electric field in the depletion layer can improve the quantum efficiency by reducing recombination of charge carriers. Herein, Cu9S5, a novel p‐type semiconductor with direct bandgap and high optical absorption coefficient, is synthesized by salt‐assisted chemical vapor deposition (CVD) method. The high density of holes in Cu9S5 endows the constructed p‐n junction, Cu9S5/MoS2, with strong build‐in electric field according to Anderson heterojunction model. Consequently, the Cu9S5/MoS2 p‐n heterojunction has low dark current at reverse bias and high photoresponse under illumination due to the efficient charge separation. The Cu9S5/MoS2 photodetector exhibits good photodetectivity of 1.6 × 1012 Jones and photoresponsivity of 76 A W−1 under illumination. This study demonstrates Cu9S5 as a promising p‐type semiconductor for high‐performance p‐n heterojunction diodes.
2D layered phosphorous compounds (2D LPCs) have led to explosion of research interest in recent years. With the diversity of valence states of phosphorus, 2D LPCs exist in various material types and possess many novel physical and chemical properties. These properties, including widely adjustable range of bandgap, diverse electronic properties covering metal, semimetal, semiconductor and insulator, together with inherent magnetism and ferroelectricity at atomic level, render 2D LPCs greatly promising in the applications of electronics, spintronics, broad‐spectrum optoelectronics, high‐performance catalysts, and energy storage, etc. In this review, the recently research progress of 2D LPCs are presented in detail. First, the 2D LPCs are classified according to their elemental composition and the corresponding crystal structures are introduced, followed by their preparation methods. Then, the novel properties are summarized and the potential applications are discussed in detail. Finally, the conclusion and perspective of the promising 2D LPCs are discussed on the foundation of the latest research progress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.