The present study deals with the buckling phenomenon modeling in a dome-shaped dielectric elastomeric (DE) actuator used in different aerodynamic and fluid power system applications. The DE actuator is a circular membrane type of actuator, which shows a large out-of-plane axial-symmetric deformation with an electrically induced loading condition. A classical continuum mechanics-based analytical model is developed to predict the electrically induced buckling deformation in the actuator. A detailed parametric study has been performed to see the influence of standard Neo-Hookean and Mooney-Rivlin types of potential energies on the geometrical and physical parameters. The findings show that the present model successfully links the sensitivity of different potential energies concerning the actuator's initial dome height and radius.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.