Proteins of the GW182 family play an important role in the execution of microRNA repression in metazoa. They interact directly with Argonaute proteins, components of microRNPs, and also form part of P-bodies, structures implicated in translational repression and mRNA degradation. Recent results demonstrated that Drosophila GW182 has the potential to both repress translation and accelerate mRNA deadenylation and decay. In contrast to a single GW182 protein in Drosophila, the three GW182 paralogs TNRC6A, TNRC6B, and TNRC6C are encoded in mammalian genomes. In this study, we provide evidence that TNRC6C, like TNRC6A and TNRC6B, is important for efficient miRNA repression. We further demonstrate that tethering of each of the human TNRC6 proteins to a reporter mRNA has a dramatic inhibitory effect on protein synthesis. The repression is due to a combination of effects on the mRNA level and mRNA translation. Through deletion and mutagenesis, we identified the C-terminal part of TNRC6C encompassing the RRM RNA-binding motif as a key effector domain mediating protein synthesis repression by TNRC6C.
Thrombocytopenia is common in patients with dengue virus (DENV) infections. With a focus on understanding the possible mechanism of thrombocytopenia in DENV infections we described a direct correlation between activation and depletion of platelets in patients. Our data showed a sharp decrease in platelet counts at day 4 of fever in patients. The high DENV genome copies in platelets correlated directly with the elevated platelet activation along with increased binding of complement factor C3 and IgG on their surface at day 4. Recovery in platelet count was observed on day 10 through day 6 and 8 with simultaneous decrease in platelet activation markers. Further, our in vitro data supported the above observations describing a concentration-dependent increase in platelet activation by DENV serotype-2. The high copy number of DENV2 genome in the platelet pellet correlated directly with platelet activation, microparticle generation and clot formation. Furthermore the DENV2-activated platelets were phagocytosed in large numbers by the monocytes. The DENV2-mediated lysis and clearance of platelets were abrogated in presence of platelet activation inhibitor, prostacyclin. These observations collectively suggest that platelet activation status is an important determinant of thrombocytopenia in dengue infections. A careful strategy of inactivation of platelets may rescue them from rapid destruction during DENV infections.
Immune dysfunction is well documented during tumor progression and likely contributes to tumor immune evasion. CD8 1 cytotoxic T lymphocytes (CTLs) are involved in antigen-specific tumor destruction and CD4 1 T cells are essential for helping this CD8 1 T cell-dependent tumor eradication. Tumors often target and inhibit T-cell function to escape from immune surveillance. This dysfunction includes loss of effector and memory T cells, bias towards type 2 cytokines and expansion of T regulatory (Treg) cells. Curcumin has previously been shown to have antitumor activity and some research has addressed the immunoprotective potential of this plant-derived polyphenol in tumor-bearing hosts. Here we examined the role of curcumin in the prevention of tumor-induced dysfunction of T cell-based immune responses. We observed severe loss of both effector and memory T-cell populations, downregulation of type 1 and upregulation of type 2 immune responses and decreased proliferation of effector T cells in the presence of tumors. Curcumin, in turn, prevented this loss of T cells, expanded central memory T cell (T CM )/effector memory T cell (T EM ) populations, reversed the type 2 immune bias and attenuated the tumor-induced inhibition of T-cell proliferation in tumor-bearing hosts. Further investigation revealed that tumor burden upregulated Treg cell populations and stimulated the production of the immunosuppressive cytokines transforming growth factor (TGF)-b and IL-10 in these cells. Curcumin, however, inhibited the suppressive activity of Treg cells by downregulating the production of TGF-b and IL-10 in these cells. More importantly, curcumin treatment enhanced the ability of effector T cells to kill cancer cells. Overall, our observations suggest that the unique properties of curcumin may be exploited for successful attenuation of tumor-induced suppression of cell-mediated immune responses.
Virtually all SARS-CoV-2 vaccines currently in clinical testing are stored in a refrigerated or frozen state prior to use. This is a major impediment to deployment in resource-poor settings. Furthermore, several of them use viral vectors or mRNA. In contrast to protein subunit vaccines, there is limited manufacturing expertise for these nucleic acid-based modalities, especially in the developing world. Neutralizing antibodies, the clearest known correlate of protection against SARS-CoV-2, are primarily directed against the Receptor Binding Domain (RBD) of the viral spike protein, suggesting that a suitable RBD construct might serve as a more accessible vaccine ingredient. We describe a monomeric, glycan engineered RBD protein fragment that is expressed at a purified yield of 214 mg/L in unoptimized, mammalian cell culture and, in contrast to a stabilized spike ectodomain, is tolerant of exposure to temperatures as high as 100 °C when lyophilized, up to 70 °C in solution and stable for over four weeks at 37 °C. In prime:boost guinea pig immunizations, when formulated with the MF59-like adjuvant AddaVax™, the RBD derivative elicited neutralizing antibodies with an endpoint geometric mean titer of ~415 against replicative virus, comparing favourably with several vaccine formulations currently in the clinic. These features of high yield, extreme thermotolerance and satisfactory immunogenicity suggest that such RBD subunit vaccine formulations hold great promise to combat COVID-19.
Mouse B cells lacking NFATc1 exhibit defective proliferation, survival, isotype class switching, cytokine production, and T cell help.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.