This paper presents experimental investigation on the damping effects of constrained layer treatment by cutting the constraining layer and constrained layer of viscoelastic material (VEM). The constraining layer causes shear in the damping material as the structure deforms. The shear deformation occurring in the viscoelastic core is mainly responsible for the dissipation of energy. The shear deformation in the VEM is not significant in regions where the bending moment is maximal. Mostly only extensional deformation occurs in the damping layer. The local high-shear deformation in the damping material is produced by placing a cut at the region of highest curvature. Cutting both the constraining and the constrained layer, which leads to segmentation, increases the shear deformation at that position. This appropriate position of high bending moment for segmentation is obtained by MATLAB program. The modal loss factor of constrained layer damped (CLD) beam is obtained by half-power bandwidth method using FFT analyzer. The CLD beams are prepared as per ASTM Standard E 756-05. Extensive experiments are conducted by making number of separate segmented CLD beams of different viscoelastic damping materials. A three dimensional model of cantilever CLD beam has been used for numerical analysis. In this work, finite element commercial software MSC/NASTRAN is used to simulate the dynamic response of a CLD beam. The modal loss factor of constrained layer damped (CLD) beam is measured by Modal Strain Energy (MSE) Method. This is a new method for enhancement of damping capabilities of constrained layer damping. It is found that the performance of segmented CLD beam using passive treatment shows significant improvement in modal loss factor which leads to vibration attenuation of beam. The numerical results are corroborated with experimental data obtained for segmented CLD beam. The analyzed finite element models are found to provide reliable results and compared very well with experimentally acquired data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.