Large‐volume central lymph node metastasis (large-volume CLNM) is associated with high recurrence rate in papillary thyroid carcinoma (PTC) patients. However, sensitivity in investigating large-volume CLNM on preoperative ultrasonography (US) is not high. The aim of this study is to investigate the clinical factors associated with large-volume CLNM in clinical N0 PTC patients. We reviewed 976 PTC patients undergoing total thyroidectomy with central lymph node dissection during 2017 to 2019. The rate of large-volume LNM was 4.1% (40 of 967 patients). Multivariate analysis showed that male gender and young age (age<45 years old) were independent risk factors for large-volume CLNM with odds ratios [(OR), 95% confidence interval (CI)] of 2.034 (1.015-4.073) and 2.997 (1.306–6.876), respectively. In papillary thyroid microcarcinoma (PTMC), capsule invasion was associated with large-volume CLNM with OR (95% CI) of 2.845 (1.110–7.288). In conventional papillary thyroid cancer (CPTC), tumor diameter (>2cm) was associated with large-volume CLNM, with OR (95% CI) 3.757 (1.061–13.310), by multivariate analysis. In ROC curve analysis on the diameter of the CPTC tumor, the Area Under Curve (AUC) =0.682(p=0.013), the best cut-off point was selected as 2.0cm. In conclusion, male gender and young age were predictors for large-volume CLNM of cN0 PTC. cN0 PTMC patient with capsule invasion and cN0 CPTC patient with tumor diameter >2cm were correlated with large-volume CLNM. Total thyroidectomy with central lymph node dissection may be a favorable primary treatment option for those patients.
Multidrug-resistant (MDR) Acinetobacter baumannii infections are difficult to treat owing to the extremely limited armamentarium. Expectations about antimicrobial peptides' use as new powerful antibacterial agents have been raised on the basis of their unique mechanism of action. Musca domestica cecropin (Mdc), a novel antimicrobial peptide from the larvae of Housefly (Musca domestica), has potently active against Gram-positive and Gram-negative bacteria standard strain. Here we evaluated the antibacterial activity of Mdc against clinical isolates of MDR-A. baumannii and elucidate the related antibacterial mechanisms. The minimal inhibitory concentration (MIC) of Mdc was 4 μg/mL. Bactericidal kinetics of Mdc revealed rapid killing of A. baumannii (30 min). Flow cytometry using viability stain demonstrated that Mdc causes A. baumannii membrane permeabilization in a concentration- and time-dependent process, which correlates with the bactericidal action. Moreover, transmission electron microscopic (TEM) examination showed that Mdc is capable of disrupting the membrane of bacterial cells, resulting in efflux of essential cytoplasmic components. Overall, Mdc could be a promising antibacterial agent for MDR-A. baumannii infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.