Cultures of a human mammary carcinoma cell line (MCF-7) were exposed to the soluble organic fraction of diesel particle emissions, benzo[a]pyrene (B[a]P) and 5-methylchrysene (5-MeCHR) to study time- and dose-related PAH-DNA binding. The concentrations of 14 PAHs in three extracts were analyzed by HPLC and PAH-DNA adducts were measured by (32)P post-labeling assay. Time-dependent DNA adducts formation of 2.5 microM B[a]P was lower than that of 2.5 microM 5-MeCHR. In comparison with B[a]P, 2-fold higher adduct formation by 5-MeCHR was observed at 12 h exposure, after which BPDE adducts decreased and 5-MeCHR continued to form adducts linearly during 48 h exposure. The data for these two PAH compounds demonstrate a large variation in adduct-forming potency, which should be taken into account when estimating DNA adducts formed by mixtures of unknown PAHs. A clear dose-response effect on formation of DNA adducts was obtained for B[a]P and a Standard Reference Material (SRM) of diesel particulate matter. The amount of B[a]P contributed more to total DNA adduct formation by SRM than by three diesel extracts. Thus, no conclusions can be drawn from diesel particle-derived B[a]P as to the adduct-forming potency of other carcinogenic PAHs. There was little change in adduct levels formed by three diesel extracts from 0 to 12 h exposure. Thereafter, the number of adducts formed by RD2 increased more rapidly than those formed by RD1 and EN97. The concentrations of 14 PAHs and adduct levels analyzed at 24 and 48 h did not change in the same proportion between the extracts. Neither could PAH-DNA adduct levels be explained by the sum of strong and weak adduct-forming PAHs analyzed in the extracts. This indicates that other PAHs in the extracts RD1, RD2 and EN97 contributed to adduct formation more than the carcinogenic adduct-forming PAHs analyzed in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.