In this paper, we examine the most appropriate method for modeling and forecasting Gambia's inflation rates. We investigate the statistical properties of the inflation data and specify two models namely seasonal autoregressive integrated moving average (SARIMA) and k-factor Gegenbauer Autoregressive Moving Average (k-factor GARMA). The first model seasonal ARIMA(1, 1, 1)(0, 0, 1) 12 was selected using the H-K Algorithm developed by Hyndman and Khandakar (2008) and 3-factor GARM A from both the spectral density graph and further analysis of the residuals from the 3-factor Gegenbauer model. The in-sample characteristics such as the Akaike Criterion and Schwarz Criterion following estimation using the first data set show that the ARIMA(1, 1, 1)(0, 0, 1) 12 outperforms the 3-factor GARM A model. However, the second data set that was preserved and used for out-of-sample forecasting suggest that the 3-factor GARM A model outperforms the seasonal ARIMA(1, 1, 1)(0, 0, 1) 12 model in out-of -sample forecasting. Our results indicated that inflation in Gambia is stationary with long-memory behavior at three distinct frequencies. We also found that the k-factor GARMA outperforms the seasonal ARIMA in out-sample forecasting which may be ascribed to the forecast horizon been large and series strongly long-range dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.