Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.
In the originally published version of this article, Cristina Dallabona's first name was unfortunately misspelled.
The CACNA1A gene encodes the transmembrane pore-forming alpha-1A subunit of the Cav 2.1 P/Q-type voltage-gated calcium channel. Several heterozygous mutations within this gene, including nonsense mutations, missense mutations, and expansion of cytosine-adenine-guanine repeats, are known to cause three allelic autosomal dominant conditions-episodic ataxia type 2, familial hemiplegic migraine type 1, and spinocerebellar ataxia type 6. An association with epilepsy and CACNA1A mutations has also been described. However, the link with epileptic encephalopathies has emerged only recently. Here we describe two patients, sister and brother, with compound heterozygous mutations in CACNA1A. Exome sequencing detected biallelic mutations in CACNA1A: A missense mutation c.4315T>A (p.Trp1439Arg) in exon 27, and a seven base pair deletion c.472_478delGCCTTCC (p.Ala158Thrfs*6) in exon 3. Both patients were normal at birth, but developed daily recurrent seizures in early infancy with concomitant extreme muscular hypotonia, hypokinesia, and global developmental delay. The brain MRI images showed progressive cerebral, cerebellar, and optic nerve atrophy. At the age of 5, both patients were blind and bedridden with a profound developmental delay. The elder sister died at that age. Their parents and two siblings were heterozygotes for one of those pathogenic mutations and expressed a milder phenotype. Both of them have intellectual disability and in addition the mother has adult onset cerebellar ataxia with a slowly progressive cerebellar atrophy. Compound heterozygous mutations in the CACNA1A gene presumably cause early onset epileptic encephalopathy, and progressive cerebral, cerebellar and optic nerve atrophy with reduced lifespan. © 2016 Wiley Periodicals, Inc.
ObjectiveReaching a genetic diagnosis of mitochondrial disorders (MDs) is challenging due to their broad phenotypic and genotypic heterogeneity. However, there is growing evidence that the use of whole exome sequencing (WES) for diagnosing patients with a clinical suspicion of an MD is effective (39–60%). We aimed to study the effectiveness of WES in clinical practice in Estonia, in patients with an unsolved, but suspected MD. We also show our first results of mtDNA analysis obtained from standard WES reads.MethodsRetrospective cases were selected from a database of 181 patients whose fibroblast cell cultures had been stored from 2003 to 2013. Prospective cases were selected during the period of 2014–2016 from patients referred to a clinical geneticist in whom an MD was suspected. We scored each patient according to the mitochondrial disease criteria (MDC) (Morava et al., 2006) after re-evaluation of their clinical data, and then performed WES analysis.ResultsA total of 28 patients were selected to the study group. A disease-causing variant was found in 16 patients (57%) using WES. An MD was diagnosed in four patients (14%), with variants in the SLC25A4, POLG, SPATA5, and NDUFB11 genes. Other variants found were associated with a neuromuscular disease (SMN1, MYH2, and LMNA genes), neurodegenerative disorder (TSPOAP1, CACNA1A, ALS2, and SCN2A genes), multisystemic disease (EPG5, NKX1–2, ATRX, and ABCC6 genes), and one in an isolated cardiomyopathy causing gene (MYBPC3). The mtDNA point mutation was found in the MT-ATP6 gene of one patient upon mtDNA analysis.ConclusionsThe diagnostic yield of WES in our cohort was 57%, proving to be a very good effectiveness. However, MDs were found in only 14% of the patients. We suggest WES analysis as a first-tier method in clinical genetic practice for children with any multisystem, neurological, and/or neuromuscular problem, as nuclear DNA variants are more common in children with MDs; a large number of patients harbor disease-causing variants in genes other than the mitochondria-related ones, and the clinical presentation might not always point towards an MD. We have also successfully conducted analysis of mtDNA from standard WES reads, providing further evidence that this method could be routinely used in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.