CARDIAC IMAGINGC oronary artery calcium (CAC) scoring in dedicated CT examinations is frequently performed to measure coronary atherosclerotic plaque burden and predict cardiovascular disease (CVD) risk. The CAC score may have increasing applications, as noted in the 2018-2019 American Heart Association and American College of Cardiology Guidelines for Cholesterol and Prevention, whereby the CAC score is a tool to refine the 10-year risk of atherosclerotic CVD when the CVD risk may be uncertain (1). CAC scoring is performed by using nonenhanced electrocardiographical-Purpose: To evaluate the performance of a DL method for automatic calcium scoring across a wide range of CT examination types and to investigate whether the method can adapt to different types of CT examinations when representative images are added to the existing training data set. Materials and Methods:The study included 7240 participants who underwent various types of nonenhanced CT examinations that included the heart: coronary artery calcium (CAC) scoring CT, diagnostic CT of the chest, PET attenuation correction CT, radiation therapy treatment planning CT, CAC screening CT, and low-dose CT of the chest. CAC and thoracic aorta calcification (TAC) were quantified using a convolutional neural network trained with (a) 1181 low-dose chest CT examinations (baseline), (b) a small set of examinations of the respective type supplemented to the baseline (data specific), and (c) a combination of examinations of all available types (combined). Supplemental training sets contained 199-568 CT images depending on the calcium burden of each population. The DL algorithm performance was evaluated with intraclass correlation coefficients (ICCs) between DL and manual (Agatston) CAC and (volume) TAC scoring and with linearly weighted k values for cardiovascular risk categories (Agatston score; cardiovascular disease risk categories: 0, 1-10, 11-100, 101-400, .400).Results: At baseline, the DL algorithm yielded ICCs of 0.79-0.97 for CAC and 0.66-0.98 for TAC across the range of different types of CT examinations. ICCs improved to 0.84-0.99 (CAC) and 0.92-0.99 (TAC) for CT protocol-specific training and to 0.85-0.99 (CAC) and 0.96-0.99 (TAC) for combined training. For assignment of cardiovascular disease risk category, the k value for all test CT scans was 0.90 (95% confidence interval [CI]: 0.89, 0.91) for the baseline training. It increased to 0.92 (95% CI: 0.91, 0.93) for both data-specific and combined training. Conclusion:A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite substantial differences in CT protocol and variations in subject population. Augmenting the algorithm training with CT protocol-specific images further improved algorithm performance.
Cardiac computed tomography (CT) allows rapid visualization of the heart and coronary arteries with high spatial resolution. However, analysis of cardiac CT scans for manifestation of coronary artery disease is time-consuming and challenging. Machine learning (ML) approaches have the potential to address these challenges with high accuracy and consistent performance. In this mini review, we present a survey of the literature on ML-based analysis of coronary artery disease in cardiac CT. We summarize ML methods for detection and characterization of atherosclerotic plaque as well as anatomically and functionally significant coronary artery stenosis.
IMPORTANCE Cardiovascular disease (CVD) is common in patients treated for breast cancer, especially in patients treated with systemic treatment and radiotherapy and in those with preexisting CVD risk factors. Coronary artery calcium (CAC), a strong independent CVD risk factor, can be automatically quantified on radiotherapy planning computed tomography (CT) scans and may help identify patients at increased CVD risk.OBJECTIVE To evaluate the association of CAC with CVD and coronary artery disease (CAD) in patients with breast cancer. DESIGN, SETTING, AND PARTICIPANTSIn this multicenter cohort study of 15 915 patients with breast cancer receiving radiotherapy between 2005 and 2016 who were followed until December 31, 2018, age, calendar year, and treatment-adjusted Cox proportional hazard models were used to evaluate the association of CAC with CVD and CAD.EXPOSURES Overall CAC scores were automatically extracted from planning CT scans using a deep learning algorithm. Patients were classified into Agatston risk categories (0, 1-10, 11-100, 101-399, >400 units). MAIN OUTCOMES AND MEASURESOccurrence of fatal and nonfatal CVD and CAD were obtained from national registries. RESULTSOf the 15 915 participants included in this study, the mean (SD) age at CT scan was 59.0 (11.2; range, 22-95) years, and 15 879 (99.8%) were women. Seventy percent (n = 11 179) had no CAC. Coronary artery calcium scores of 1 to 10, 11 to 100, 101 to 400, and greater than 400 were present in 10.0% (n = 1584), 11.5% (n = 1825), 5.2% (n = 830), and 3.1% (n = 497) respectively. After a median follow-up of 51.2 months, CVD risks increased from 5.2% in patients with no CAC to 28.2% in patients with CAC scores higher than 400. After adjustment, CVD risk increased with higher CAC score (hazard ratio [HR] CAC = 1-10 = 1.1; 95% CI, 0.9-1.4; HR CAC = 11-100 = 1.8; 95% CI, 1.5-2.1; HR CAC = 101-400 = 2.1; 95% CI, 1.7-2.6; and HR CAC>400 = 3.4; 95% CI, 2.8-4.2). Coronary artery calcium was particularly strongly associated with CAD (HR CAC>400 = 7.8; 95% CI, 5.5-11.2). The association between CAC and CVD was strongest in patients treated with anthracyclines (HR CAC>400 = 5.8; 95% CI, 3.0-11.4) and patients who received a radiation boost (HR CAC>400 = 6.1; 95% CI, 3.8-9.7).CONCLUSIONS AND RELEVANCE This cohort study found that coronary artery calcium on breast cancer radiotherapy planning CT scan results was associated with CVD, especially CAD. Automated CAC scoring on radiotherapy planning CT scans may be used as a fast and low-cost tool to identify patients with breast cancer at increased risk of CVD, allowing implementing CVD risk-mitigating strategies with the aim to reduce the risk of CVD burden after breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.