-The group agreed on sets of uniform sampling criteria, placental gross descriptors, pathologic terminologies, and diagnostic criteria. The terminology and microscopic descriptions for maternal vascular malperfusion, fetal vascular malperfusion, delayed villous maturation, patterns of ascending intrauterine infection, and villitis of unknown etiology were agreed upon. Topics requiring further discussion were highlighted. Ongoing developments in our understanding of the pathology of the placenta, scientific bases of the maternofetoplacental triad, and evolution of the clinical significance of defined lesions may necessitate further refinements of these consensus guidelines. The proposed structure will assist in international comparability of clinicopathologic and scientific studies and assist in refining the significance of lesions associated with adverse pregnancy and later health outcomes.
Consensus-based definitions for early and late FGR, as well as cut-off values for parameters involved, were agreed upon by a panel of experts. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.
Angiotensin‐converting enzyme 2 (ACE2) has been established as the functional host receptor for severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), the virus responsible for the current devastating worldwide pandemic of coronavirus disease 2019 (COVID‐19). ACE2 is abundantly expressed in a variety of cells residing in many different human organs. In human physiology, ACE2 is a pivotal counter‐regulatory enzyme to ACE by the breakdown of angiotensin II, the central player in the renin–angiotensin–aldosterone system (RAAS) and the main substrate of ACE2. Many factors have been associated with both altered ACE2 expression and COVID‐19 severity and progression, including age, sex, ethnicity, medication, and several co‐morbidities, such as cardiovascular disease and metabolic syndrome. Although ACE2 is widely distributed in various human tissues and many of its determinants have been well recognised, ACE2‐expressing organs do not equally participate in COVID‐19 pathophysiology, implying that other mechanisms are involved in orchestrating cellular infection resulting in tissue damage. Reports of pathologic findings in tissue specimens of COVID‐19 patients are rapidly emerging and confirm the established role of ACE2 expression and activity in disease pathogenesis. Identifying pathologic changes caused by SARS‐CoV‐2 infection is crucially important as it has major implications for understanding COVID‐19 pathophysiology and the development of evidence‐based treatment strategies. Currently, many interventional strategies are being explored in ongoing clinical trials, encompassing many drug classes and strategies, including antiviral drugs, biological response modifiers, and RAAS inhibitors. Ultimately, prevention is key to combat COVID‐19 and appropriate measures are being taken accordingly, including development of effective vaccines. In this review, we describe the role of ACE2 in COVID‐19 pathophysiology, including factors influencing ACE2 expression and activity in relation to COVID‐19 severity. In addition, we discuss the relevant pathological changes resulting from SARS‐CoV‐2 infection. Finally, we highlight a selection of potential treatment modalities for COVID‐19. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.