The standard procedure adopted up to the present in proteome analysis calls for just reduction prior to the isoelectric focusing/immobilized pH gradient (IEF/IPG) step, followed by a second reduction/alkylation step in between the first and second dimension, in preparation for the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) step. This protocol is far from being optimal. It is here demonstrated, by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF)-mass spectrometry, that failure to reduce and alkylate proteins prior to any electrophoretic step (including the first dimension) results in a large number of spurious spots in the alkaline pH region, due to "scrambled" disulfide bridges among like and unlike chains. This series of artefactual spots comprises not only dimers, but an impressive series of oligomers (up to nonamers) in the case of simple polypeptides such as the human alpha- and beta-globin chains, which possess only one (alpha-) or two (beta-) -SH groups. As a result, misplaced spots are to be found in the resulting two-dimensional (2-D) map, if performed with the wrong protocol. The number of such artefactual spots can be impressively large. In the case of analysis of complex samples, such as human plasma, it is additionally shown that failure to alkylate proteins results in a substantial loss of spots in the alkaline gel region, possibly due to the fact that these proteins, at their pI, regenerate their disulfide bridges with concomitant formation of macroaggregates which become entangled with and trapped within the polyacrylamide gel fibers. This strongly quenches their transfer in the subsequent SDS-PAGE step.
The acute respiratory distress syndrome (ARDS) describes a heterogenous population of patients with acute severe respiratory failure. However, contemporary advances have begun to identify distinct sub‐phenotypes that exist within its broader envelope. These sub‐phenotypes have varied outcomes and respond differently to several previously studied interventions. A more precise understanding of their pathobiology and an ability to prospectively identify them, may allow for the development of precision therapies in ARDS. Historically, animal models have played a key role in translational research, although few studies have so far assessed either the ability of animal models to replicate these sub‐phenotypes or investigated the presence of sub‐phenotypes within animal models. Here, in three ovine models of ARDS, using combinations of oleic acid and intravenous, or intratracheal lipopolysaccharide, we investigated the presence of sub‐phenotypes which qualitatively resemble those found in clinical cohorts. Principal Component Analysis and partitional clustering identified two clusters, differentiated by markers of shock, inflammation, and lung injury. This study provides a first exploration of ARDS phenotypes in preclinical models and suggests a methodology for investigating this phenomenon in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.