High activation of DNA damage response is implicated in cisplatin (CDDP) resistance which presents as a serious obstacle for bladder cancer treatment. Cdc6 plays an important role in the malignant progression of tumor. Here, we reported that Cdc6 expression is up-regulated in bladder cancer tissues and is positively correlated to high tumor grade. Cdc6 depletion can attenuate the malignant properties of bladder cancer cells, including DNA replication, migration and invasion. Furthermore, higher levels of chromatin-binding Cdc6 and ATR were detected in CDDP-resistant bladder cancer cells than in the parent bladder cancer cells. Intriguingly, down-regulation of Cdc6 can enhance sensitivity to CDDP both in bladder cancer cells and CDDP-resistant bladder cancer cells. Cdc6 depletion abrogates S phase arrest caused by CDDP, leading to aberrant mitosis by inactivating ATR-Chk1-Cdc25C pathway. Our results indicate that Cdc6 may be a promising target for overcoming CDDP resistance in bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.