Abstract. With remote sensing we can readily observe the Earth's surface, but direct observation of the sub-surface remains a challenge. In hydrology, but also in related disciplines such as agricultural and atmospheric sciences, knowledge of the dynamics of soil moisture in the root zone of vegetation is essential, as this part of the vadose zone is the core component controlling the partitioning of water into evaporative fluxes, drainage, recharge, and runoff. In this paper, we compared the catchment-scale soil moisture content in the root zone of vegetation, computed by a lumped conceptual model, with the remotely sensed Normalized Difference Infrared Index (NDII) in the Upper Ping River basin (UPRB) in northern Thailand. The NDII is widely used to monitor the equivalent water thickness (EWT) of leaves and canopy. Satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were used to determine the NDII over an 8-day period, covering the study area from 2001 to 2013. The results show that NDII values decrease sharply at the end of the wet season in October and reach lowest values near the end of the dry season in March. The values then increase abruptly after rains have started, but vary in an insignificant manner from the middle to the late rainy season. This paper investigates if the NDII can be used as a proxy for moisture deficit and hence for the amount of moisture stored in the root zone of vegetation, which is a crucial component of hydrological models. During periods of moisture stress, the 8-day average NDII values were found to correlate well with the 8-day average soil moisture content (Su) simulated by the lumped conceptual hydrological rainfall–runoff model FLEX for eight sub-catchments in the Upper Ping basin. Even the deseasonalized Su and NDII (after subtracting the dominant seasonal signal) showed good correlation during periods of moisture stress. The results illustrate the potential of the NDII as a proxy for catchment-scale root zone moisture deficit and as a potentially valuable constraint for the internal dynamics of hydrological models. In dry periods, when plants are exposed to water stress, the EWT (reflecting leaf water deficit) decreases steadily, as moisture stress in the leaves is connected to moisture deficits in the root zone. Subsequently, when the soil moisture is replenished as a result of rainfall, the EWT increases without delay. Once leaf water is close to saturation – mostly during the heart of the wet season – leaf characteristics and NDII values are not well correlated. However, for both hydrological modelling and water management, the stress periods are most important, which is why this product has the potential of becoming a highly efficient model constraint, particularly in ungauged basins.
Abstract. With remote sensing we can readily observe the Earth's surface, but looking under the surface into the root zone of vegetation is still a major challenge. Yet knowledge on the dynamics of soil moisture in the root zone is essential for agriculture, land–atmosphere interaction and hydrological modelling, alike. In this paper we develop a novel approach to monitor the soil moisture storage deficit in the root zone of vegetation, by using the remotely sensed Normalised Difference Infrared Index (NDII) in the Upper Ping River Basin (UPRB) in northern Thailand. Satellite data from the Moderate Resolution Imaging Spectro-radiometer (MODIS) was used to evaluate the NDII over an 8 day period, covering the study area from 2001 to 2013. The results show that NDII values decrease sharply at the end of the wet season in October and reach lowest values near the end of the dry season in March. The values then increase abruptly after rains have started, but vary in an insignificant manner from the middle to the late rainy season. The NDII proves to be a very strong proxy for moisture storage deficit in the root zone, which is a crucial component of hydrological models. In addition, the NDII appears to be a reliable indicator for the temporal and spatial distribution of drought conditions in the UPRB. The 8 day average NDII values were found to correlate very well with the 8 day average soil moisture content (SU) simulated by FLEXL (rainfall–runoff model) at 8 runoff stations during the dry season – giving an average R2 value 0.87 on an exponential relationship, while for the wet season it reduced to be around 0.61. Apparently, the NDII is an effective index for the moisture storage in the root zone during the time of moisture deficit, and a powerful indicator to assess droughts. In the dry season, when plants are exposed to water stress, the leaf-water deficit increases steadily. Once leaf-water is close to saturation – mostly at the end of the wet season – leaf characteristics and NDII values do not vary significantly, causing lower correlation between NDII and Su in the wet season. However, the correlations between NDII and Su still remain high for both seasons and therefore the product can be used to define drought situations throughout the year and be of use to water management.
This study presents an exhaustive evaluation of the performance of three statistical downscaling techniques for generating daily rainfall occurrences at 22 rainfall stations in the upper Ping river basin (UPRB), Thailand. The three downscaling techniques considered are the modified Markov model (MMM), a stochastic model, and two variants of regression models, statistical models, one with single relationship for all days of the year (RegressionYrly) and the other with individual relationships for each of the 366 days (Regression366). A stepwise regression is applied to identify the significant atmospheric (ATM) variables to be used as predictors in the downscaling models. Aggregated wetness state indicators (WIs), representing the recent past wetness state for the previous 30, 90 or 365 days, are also considered as additional potential predictors since they have been effectively used to represent the low-frequency variability in the downscaled sequences. Grouping of ATM and all possible combinations of WI is used to form eight predictor sets comprising ATM, ATM-WI30, ATM-WI90, ATM-WI365, ATM-WI30&90, ATM-WI30&365, ATM-WI90&365 and ATM-WI30&90&365. These eight predictor sets were used to run the three downscaling techniques to create 24 combination cases. These cases were first applied at each station individually (single site simulation) and thereafter collectively at all sites (multisite simulations) following multisite downscaling models leading to 48 combination cases in total that were run and evaluated. The downscaling models were calibrated using atmospheric variables from the National Centers for Environmental Prediction (NCEP) reanalysis database and validated using representative General Circulation Models (GCM) data. Identification of meaningful predictors to be used in downscaling, calibration and setting up of downscaling models, running all 48 possible predictor combinations and a thorough evaluation of results required considerable efforts and knowledge of the research area. The validation results show that the use of WIs remarkably improves the accuracy of downscaling models in terms of simulation of standard deviations of annual, monthly and seasonal wet days. By comparing the overall performance of the three downscaling techniques keeping common sets of predictors, MMM provides the best results of the simulated wet and dry spells as well as the standard deviation of monthly, seasonal and annual wet days. These findings are consistent across both single site and multisite simulations. Overall, the MMM multisite model with ATM and wetness indicators provides the best results. Upon evaluating the combinations of ATM and sets of wetness indicators, ATM-WI30&90 and ATM-WI30&365 were found to perform well during calibration in reproducing the overall rainfall occurrence statistics while ATM-WI30&365 was found to significantly improve the accuracy of monthly wet spells over the region. However, these models perform poorly during validation at annual time scale. The use of multi-dimension bias correction approaches is recommended for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.