The inexorable rise of carbon dioxide level in the atmosphere, already exceeding 400 ppm, highlights the need for reduction of CO 2 emissions. Harvesting solar energy to drive reverse chemical reactions to fuel combustion offers a possible solution. The produced chemical fuels (e.g. hydrogen, methane, or methanol) are also a convenient means of energy storage, not available in photovoltaic cells. This Review is focused on the heterogeneous photocatalytic water splitting and on CO 2 reduction with nanostructured semiconductors, metals, and their hybrids. The stages of light absorption, charge separation and transfer, and surface reactions are discussed, together with possible energy-loss mechanisms and means of their elimination. Many novel materials have been developed in this active field of research, and this Review describes the concepts underpinning the continued progress in the field. The approaches which hold promise for substantial improvement in terms of efficiency, cost, and environmental sustainability are discussed in the second part. These include emerging materials (carbon dots and nitrides, bimetallic catalysts, perovskite oxides, 2D materials), more complex architectures of the photocatalyst (Z-scheme, self-assembly), and mechanisms (defect engineering, hot electron injection, redox mediators). The concluding part provides an outlook for the future directions in the field.
Carbon dots (CDs) are an intriguing fluorescent material; however, due to a plethora of synthesis techniques and precursor materials, there is still significant debate on their structure and the origin of their optical properties. The two most prevalent mechanisms to explain them are based on polycyclic aromatic hydrocarbon domains and small molecular fluorophores, for instance, citrazinic acid. Yet, how these form and whether they can exist simultaneously is still under study. To address this, we vary the hydrothermal synthesis time of CDs obtained from citric acid and ethylenediamine and show that in the initial phase molecular fluorophores, likely 2-pyridone derivatives, account for the blue luminescence of the dots. However, over time, while the overall size of the CDs does not change, aromatic domains form and grow, resulting in a second, faster decay channel at similar wavelengths and also creating additional lower energetic states. Electrophoresis provides further evidence that the ensemble of CDs consists of several subsets with different internal structure and surface charge. The understanding of the formation mechanism enables a control of the chemical origin of these emitters and the ensuing optical properties of the CDs through synthetic means.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.