SUMMARYRubella virus infection typically presents as a mild illness in children; however, infection during pregnancy may cause the birth of an infant with congenital rubella syndrome (CRS). As of February 2017, India began introducing rubella-containing vaccine (RCV) into the public-sector childhood vaccination programme. Low-level RCV coverage among children over several years can result in an increase in CRS incidence by increasing the average age of infection without sufficiently reducing rubella incidence. We evaluated the impact of RCV introduction on CRS incidence across India's heterogeneous demographic and epidemiological contexts. We used a deterministic age-structured model that reflects Indian states’ rural and urban area-specific demography and vaccination coverage levels to simulate rubella dynamics and estimate CRS incidence with and without RCV introduction to the public sector. Our analysis suggests that current low-level private-sector vaccination has already slightly increased the burden of CRS in India. We additionally found that the effect of public-sector RCV introduction depends on the basic reproductive number, R0, of rubella. If R0 is five, a value empirically estimated from an array of settings, CRS incidence post-RCV introduction will likely decrease. However, if R0 is seven or nine, some states may experience short-term or annual increases in CRS, even if a long-term total reduction in cases (30 years) is expected. Investment in population-based serological surveys and India's fever/rash surveillance system will be key to monitoring the success of the vaccination programme.
BackgroundTo improve immunization coverage, most interventions that are part of the national immunization program in India address supply-side challenges. But, there is growing evidence that addressing demand-side factors can potentially contribute to improvement in childhood vaccination coverage in low- and middle-income countries. Participatory engagement of communities can address demand-side barriers while also mobilizing the community to advocate for better service delivery. The objective of this study is to evaluate the impact of a novel community engagement approach in improving immunization coverage. In our proposed intervention, we go a step beyond merely engaging the community and strive towards increasing ‘ownership’ by the communities.Methods/DesignWe adopt a cluster randomized design with two groups to evaluate the intervention in Assam, a state in the northeast region of India. To recruit villages and participants at baseline, we used a two-stage stratified random sampling method. We stratified villages; our unit of randomization, based on census data and randomly selected villages from each of the four strata. At the second-stage, we selected random sub-sample of eligible households (having children in the age group of 6–23 months) from each selected village. The study uses a repeated cross sectional design where we track the same sampled villages but draw independent random samples of households at baseline and endline. Total number of villages required for the study is 180 with 15 eligible HHs from each village. Post-baseline survey, we adopt a stratified randomization strategy to achieve better balance in intervention and control groups, leveraging information from the extensive baseline survey.DiscussionThe proposed intervention can help identify barriers to vaccination at the local level and potentially lead to more sustainable solutions over the long term. Our sampling design, sample size calculation, and randomization strategy address internal validity of our evaluation design. We believe that it would allow us to causally relate any observed changes in immunization coverage to the intervention.Trial registrationThe trial has been registered on 7th February, 2017 under the Clinical Trials Registry- India (CTRI), hosted at the ICMR’s National Institute of Medical Statistics, having registration number CTRI/2017/02/007792. This is the original study protocol.
Information on population health indicators in India come from a number of surveys that vary in periodicity, scope and detail. In the case of immunization, the most recent coverage indicators are derived from the first round of Annual Health Survey (AHS-1, 2010-11), but these were conducted only in 9 of 35 states and union territories. The most recent national surveys of immunization coverage were conducted in 2009 (Coverage Evaluation Survey) by UNICEF. Therefore, reliable immunization coverage data for the entire country since 2009 is lacking. We used an established approach of small area estimation to predict coverage rates of several vaccinations for the remaining 26 states (not covered by AHS-1) in 2011. In our method, we considered a linear mixed model that combines data from five cross sectional surveys representing five different time points. Our model encompasses sampling error of the survey estimates, area specific random effects, autocorrelated area by time random effects and hence, borrows strength across areas and time points both. Model-based estimates for 2011 are almost identical to the AHS-1 estimates for the nine states, suggesting that our model provides reliable prediction of vaccination coverage as AHS-1 estimates are highly precise because of their large sample size. Results indicate that coverage inequality between rural and urban areas has been reduced significantly for most states in India. The National Rural Health Mission has had both supply side and demand side effects on the immunization programme in rural India. In combination, these effects may have contributed to the reduction of vaccination coverage gaps between urban and rural areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.