There are short- and long-term gains in the cognitive skills of children with intractable epilepsy after hemispherotomy and posterior quadrantectomy that was better in those patients with acquired diseases. Age of seizure onset and duration of seizures prior to surgery were independent variables that predicted the postoperative outcome.
Stereotactic radiosurgery (SRS) is an established treatment for brain arteriovenous malformations (AVMs) that drives blood vessel closure through cellular proliferation, thrombosis and fibrosis, but is limited by a delay to occlusion of 2-3 years and a maximum treatable size of 3 cm. In this current study we used SRS as a priming tool to elicit novel protein expression on the endothelium of irradiated AVM vessels, and these proteins were then targeted with prothrombotic conjugates to induce rapid thrombosis and vessel closure. SRS-induced protein changes on the endothelium in an animal model of AVM were examined using in vivo biotin labeling of surface-accessible proteins and comparative proteomics. LC-MS/MS using SWATH acquisition label-free mass spectrometry identified 280 proteins in biotin-enriched fractions. The abundance of 56 proteins increased after irradiation of the rat arteriovenous fistula (20 Gy, ≥1.5-fold). A large proportion of intracellular proteins were present in this subset: 29 mitochondrial and 9 cytoskeletal. Three of these proteins were chosen for further validation based on previously published evidence for surface localization and a role in autoimmune stimulation: cardiac troponin I (TNNI3); manganese superoxide dismutase (SOD2); and the E2 subunit of the pyruvate dehydrogenase complex (PDCE2). Immunostaining of AVM vessels confirmed an increase in abundance of PDCE2 across the vessel wall, but not a measurable increase in TNNI3 or SOD2. All three proteins co-localized with the endothelium after irradiation, however, more detailed subcellular distribution could not be accurately established. In vitro, radiation-stimulated surface translocation of all three proteins was confirmed in nonpermeabilized brain endothelial cells using immunocytochemistry. Total protein abundance increased modestly after irradiation for PDCE2 and SOD2 but decreased for TNNI3, suggesting that radiation primarily affects subcellular distribution rather than protein levels. The novel identification of these proteins as surface exposed in response to radiation raises important questions about their potential role in radiation-induced inflammation, fibrosis and autoimmunity, but may also provide unique candidates for vascular targeting in brain AVMs and other vascular tissues.
Objectives: To study the outcome of disconnective epilepsy surgery for intractable hemispheric and sub-hemispheric pediatric epilepsy. Methods: A retrospective analysis of the epilepsy surgery database was done in all children (age <18 years) who underwent a peri-insular hemispherotomy (PIH) or a peri-insular posterior quadrantectomy (PIPQ) from April 2000 to March 2011. All patients underwent a detailed pre surgical evaluation. Seizure outcome was assessed by the Engel's classification and cognitive skills by appropriate measures of intelligence that were repeated annually. Results: There were 34 patients in all. Epilepsy was due to Rasmussen's encephalitis (RE), Infantile hemiplegia seizure syndrome (IHSS), Hemimegalencephaly (HM), Sturge Weber syndrome (SWS) and due to post encephalitic sequelae (PES). Twenty seven (79.4%) patients underwent PIH and seven (20.6%) underwent PIPQ. The mean follow up was 30.5 months. At the last follow up, 31 (91.1%) were seizure free. The age of seizure onset and etiology of the disease causing epilepsy were predictors of a Class I seizure outcome. Conclusions: There is an excellent seizure outcome following disconnective epilepsy surgery for intractable hemispheric and subhemispheric pediatric epilepsy. An older age of seizure onset, RE, SWS and PES were good predictors of a Class I seizure outcome.
Vascular targeting with pro-thrombotic antibody-conjugates is a promising biological treatment for brain arteriovenous malformations (bAVMs). However, targeted drug delivery relies on the identification of unique or overexpressed markers on the surface of a target cell. In the absence of inherent biological markers, stereotactic radiosurgery may be used to prime induction of site-specific and targetable molecular changes on the endothelial surface. To investigate lumen-accessible, endothelial targets induced by radiation, we combined Gamma knife surgery in an AVM animal model with in vivo biotin-labeling and comparative proteomics. Two proteins, αB-crystallin (CRYAB)—a small heat shock protein that normally acts as an intracellular chaperone to misfolded proteins—and activated leukocyte cell adhesion molecule CD166, were further validated for endothelial surface expression after irradiation. Immunostaining of endothelial cells in vitro and rat AVM tissue ex vivo confirmed de novo induction of CRYAB following irradiation (20 Gy). Western analysis demonstrated that CRYAB accumulated intracellularly as a 20 kDa monomer, but, at the cell surface, a novel 65 kDa protein was observed, suggesting radiation stimulates translocation of an atypical CRYAB isoform. In contrast, CD166 had relatively high expression in non-irradiated cells, localized predominantly to the lateral surfaces. Radiation increased CD166 surface exposure by inducing translocation from intercellular junctions to the apical surface without significantly altering total protein levels. These findings reinforce the dynamic molecular changes induced by radiation exposure, particularly at the cell surface, and support further investigation of radiation as a priming mechanism and these molecules as putative targets for focused drug delivery in irradiated tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.