A focused library of furanopyrimidine (350 compounds) was rapidly synthesized in parallel reactors and in situ screened for Aurora and epidermal growth factor receptor (EGFR) kinase activity, leading to the identification of some interesting hits. On the basis of structural biology observations, the hit 1a was modified to better fit the back pocket, producing the potent Aurora inhibitor 3 with submicromolar antiproliferative activity in HCT-116 colon cancer cell line. On the basis of docking studies with EGFR hit 1s, introduction of acrylamide Michael acceptor group led to 8, which inhibited both the wild and mutant EGFR kinase and also showed antiproliferative activity in HCC827 lung cancer cell line. Furthermore, the X-ray cocrystal study of 3 and 8 in complex with Aurora and EGFR, respectively, confirmed their hypothesized binding modes. Library construction, in situ screening, and structure-based drug design (SBDD) strategy described here could be applied for the lead identification of other kinases.
The synthesis and structure-activity relationship studies of novel indole derivatives as peroxisome proliferator-activated receptor (PPAR) agonists are reported. Indole, a drug-like scaffold, was studied as a core skeleton for the acidic head part of PPAR agonists. The structural features (acidic head, substitution on indole, and linker) were optimized first, by keeping benzisoxazole as the tail part, based on binding and functional activity at PPARgamma protein. The variations in the tail part, by introducing various heteroaromatic ring systems, were then studied. In vitro evaluation led to identification of a novel series of indole compounds with a benzisoxazole tail as potent PPAR agonists with the lead compound 14 (BPR1H036) displaying an excellent pharmacokinetic profile in BALB/c mice and an efficacious glucose lowering activity in KKA(y) mice. Structural biology studies of 14 showed that the indole ring contributes strong hydrophobic interactions with PPARgamma and could be an important moiety for the binding to the protein.
Einfach schön: Das Guanidinderivat 1 katalysiert eine Tandemreaktion aus konjugierter Addition und enantioselektiver Protonierung zwischen Phthalimidoacrylaten und Thiolen (siehe Schema) und zwischen Itaconimiden und Phosphanoxiden. Dabei entstehen optisch reine Cystein‐ und Cystinanaloga. Bei hoch enantioselektiven Deuterierungen wurde ein kleiner, aber deutlicher kinetischer Isotopeneffekt festgestellt. R=Aryl, Benzhydryl; R1–R4=H, Me, Cl, F.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.