Transportation electrification is happening at a rapid pace around the globe in response to the climate change mitigation measures taken by the regulatory agencies to curb tailpipe emissions. As the electric vehicle technology evolved, the size of on-board storage units has increased, which require charging from an external energy source. Renewable charging of electric vehicles is an attractive option to reduce the carbon footprint of an electric vehicle. The intermittent nature of the renewables necessitates a storage unit to provide continuous power. With a battery complementing solar generation, a power converter is deployed to interface these sources and storage units with the electric vehicle for charging. The converter shall now have to operate to quench the charging requirements by sourcing power from solar generation and storage elements. The converter also has to capture the generated solar power during the non-charging period and store it in the battery. All these functional requirements demand a robust energy management strategy to utilize all available sources and storage units efficiently without compromising load requirements. A Stateflow-based energy management algorithm for a three-port converter is proposed in this work. The proposed algorithm is implemented using OPAL-RT, and the real-time simulation results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.