The biosynthesis of copper oxide (GS-CuO) nanoparticles utilizing Magnolia champaca floral extract was studied, where the Magnolia champaca was used for the reduction of precurosor to elemental CuO nanopartciles which also provides stabilization. Physiochemical properties of GS-CuO nanoparticles were described utilizing analytical strategies like UV-Vis, XRD, FT-IR, SEM, TEM, Zeta potential and DLS analysis. The UV-Visible spectrum gave maximum absorbance in the scale of 250-350 nm. The biosynthesized GS-CuO was crystallite in nature and it was investigated by XRD and was verified with JCPDS NO: 89-589. FT-IR analysis spectrum at 3302 cm-1 is assigned for alcoholic hydroxide group, 1022 cm-1 correspondings to CH3 shaking vibration respectively. The morphology of biosynthesized nanoparticles was between 20 to 40 nm and spherical shape was investigated utilizing TEM. The antoxidant potentiality of GS-CuO was evaluated by DPPH, ABST test, that demonstrated inhibition values at 76.30% and 66.46% respectively. Toxicity quality examination was performed utilizing morphological investigation, incubating, and viability rate examination on zebrafish embryonic model. The toxicity quality assessment with zebrafish uncovered organ advancement with various viability and hatching speed at 48 and 72 hpf with LC50 of 500 ± 15 mg/L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.