Intensive care unit (ICU)-acquired infections are a challenging health problem worldwide, especially when caused by multidrug-resistant (MDR) pathogens. In ICUs, inanimate surfaces and equipment (e.g., bedrails, stethoscopes, medical charts, ultrasound machine) may be contaminated by bacteria, including MDR isolates. Cross-transmission of microorganisms from inanimate surfaces may have a significant role for ICU-acquired colonization and infections. Contamination may result from healthcare workers’ hands or by direct patient shedding of bacteria which are able to survive up to several months on dry surfaces. A higher environmental contamination has been reported around infected patients than around patients who are only colonized and, in this last group, a correlation has been observed between frequency of environmental contamination and culture-positive body sites. Healthcare workers not only contaminate their hands after direct patient contact but also after touching inanimate surfaces and equipment in the patient zone (the patient and his/her immediate surroundings). Inadequate hand hygiene before and after entering a patient zone may result in cross-transmission of pathogens and patient colonization or infection. A number of equipment items and commonly used objects in ICU carry bacteria which, in most cases, show the same antibiotic susceptibility profiles of those isolated from patients. The aim of this review is to provide an updated evidence about contamination of inanimate surfaces and equipment in ICU in light of the concept of patient zone and the possible implications for bacterial pathogen cross-transmission to critically ill patients.
Background The efficacy and safety of high flow nasal therapy (HFNT) in patients with acute hypercapnic exacerbation of chronic obstructive pulmonary disease (AECOPD) are unclear. Our aim was to evaluate the short-term effect of HFNT versus NIV in patients with mild-to-moderate AECOPD, with the hypothesis that HFNT is non-inferior to NIV on CO2 clearance after 2 h of treatment. Methods We performed a multicenter, non-inferiority randomized trial comparing HFNT and noninvasive ventilation (NIV) in nine centers in Italy. Patients were eligible if presented with mild-to-moderate AECOPD (arterial pH 7.25–7.35, PaCO2 ≥ 55 mmHg before ventilator support). Primary endpoint was the mean difference of PaCO2 from baseline to 2 h (non-inferiority margin 10 mmHg) in the per-protocol analysis. Main secondary endpoints were non-inferiority of HFNT to NIV in reducing PaCO2 at 6 h in the per-protocol and intention-to-treat analysis and rate of treatment changes. Results Seventy-nine patients were analyzed (80 patients randomized). Mean differences for PaCO2 reduction from baseline to 2 h were − 6.8 mmHg (± 8.7) in the HFNT and − 9.5 mmHg (± 8.5) in the NIV group (p = 0.404). By 6 h, 32% of patients (13 out of 40) in the HFNT group switched to NIV and one to invasive ventilation. HFNT was statistically non-inferior to NIV since the 95% confidence interval (CI) upper boundary of absolute difference in mean PaCO2 reduction did not reach the non-inferiority margin of 10 mmHg (absolute difference 2.7 mmHg; 1-sided 95% CI 6.1; p = 0.0003). Both treatments had a significant effect on PaCO2 reductions over time, and trends were similar between groups. Similar results were found in both per-protocol at 6 h and intention-to-treat analysis. Conclusions HFNT was statistically non-inferior to NIV as initial ventilatory support in decreasing PaCO2 after 2 h of treatment in patients with mild-to-moderate AECOPD, considering a non-inferiority margin of 10 mmHg. However, 32% of patients receiving HFNT required NIV by 6 h. Further trials with superiority design should evaluate efficacy toward stronger patient-related outcomes and safety of HFNT in AECOPD. Trial registration: The study was prospectively registered on December 12, 2017, in ClinicalTrials.gov (NCT03370666).
Background The objective of this study was to assess the cumulative incidence of invasive candidiasis (IC) in intensive care units (ICUs) in Europe. Methods A multinational, multicenter, retrospective study was conducted in 23 ICUs in 9 European countries, representing the first phase of the candidemia/intra-abdominal candidiasis in European ICU project (EUCANDICU). Results During the study period, 570 episodes of ICU-acquired IC were observed, with a cumulative incidence of 7.07 episodes per 1000 ICU admissions, with important between-center variability. Separated, non-mutually exclusive cumulative incidences of candidemia and IAC were 5.52 and 1.84 episodes per 1000 ICU admissions, respectively. Crude 30-day mortality was 42%. Age (odds ratio [OR] 1.04 per year, 95% CI 1.02–1.06, p < 0.001), severe hepatic failure (OR 3.25, 95% 1.31–8.08, p 0.011), SOFA score at the onset of IC (OR 1.11 per point, 95% CI 1.04–1.17, p 0.001), and septic shock (OR 2.12, 95% CI 1.24–3.63, p 0.006) were associated with increased 30-day mortality in a secondary, exploratory analysis. Conclusions The cumulative incidence of IC in 23 European ICUs was 7.07 episodes per 1000 ICU admissions. Future in-depth analyses will allow explaining part of the observed between-center variability, with the ultimate aim of helping to improve local infection control and antifungal stewardship projects and interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.