In order to provide the comfortable areas for human, the comfortable rooms are the basic needs area, controlled temperature, and relative humidity (RH). The aim of this study is to control and maintain the temperature and RH of the comfortable room using a proportional integral derivative (PID) controller tuned by metaheuristic optimization. In tuning gains of the PID controller, the modern metaheuristic optimizations, ant colony optimization (ACO), and symbiotic organism search (SOS) are applied and the performance of the proposed control system is compared to that of the traditional methods. In the experimental testing, the controlled room size is tested in the area of width 7.80 m, length 8.00 m, and height 3.80 m. The simulation results show that the performance of the proposed control system-tuned gains of PID controllers by using SOS algorithm has the least steady-state error with 15% rise time and also the overshoot can reach the setpoint. In the case of disturbance occurring in the system, the proposed control system is able to approach the setpoint. Therefore, the PID controller tuned by SOS algorithm can regulate the temperature and humidity of the comfortable room, proficiently.
An induction motor is a key device for an industrial machine. The installation misalignment of the motor will result in derating problems and energy consumption that is generally used to analyze signal faults using the fast Fourier transform (FFT) method. Problems with the rotor affect the non-stationary signal and FFT can be utilized to analyze this problem inefficiently. This paper proposed the testing and analysis of faults in an eccentric rotor at different levels using the stator current detection technique and the calculation of the energy signal coefficient via the wavelet decomposition (WD) method. The experimental results showed that an increase in eccentricity had a linear relation with the energy signal, where R2 was 80.81%. Moreover, the test results illustrated that the proposed method was more efficient than FFT and applicable to motor fault analysis and application in the industrial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.