Despite great efforts over several decades, our best models of primary visual cortex (V1) still predict neural responses quite poorly when probed with natural stimuli, highlighting our limited understanding of the nonlinear computations in V1. At the same time, recent advances in machine learning have shown that deep neural networks can learn highly nonlinear functions for visual information processing.Two approaches based on deep learning have recently been successfully applied to neural data: transfer learning for predicting neural activity in higher areas of the primate ventral stream and data-driven models to predict retina and V1 neural activity of mice. However, so far there exists no comparison between the two approaches and neither of them has been used to model the early primate visual system. Here, we test the ability of both approaches to predict neural responses to natural images in V1 of awake monkeys. We found that both deep learning approaches outperformed classical linearnonlinear and wavelet-based feature representations building on existing V1 encoding theories. On our dataset, transfer learning and data-driven models performed similarly, while the data-driven model employed a much simpler architecture. Thus, multi-layer CNNs set the new state of the art for predicting neural responses to natural images in primate V1. Having such good predictive in-silico models opens the door for quantitative studies of yet unknown nonlinear computations in V1 without being limited by the available experimental time.
Despite great efforts over several decades, our best models of primary visual cortex (V1) still predict spiking activity quite poorly when probed with natural stimuli, highlighting our limited understanding of the nonlinear computations in V1. Recently, two approaches based on deep learning have emerged for modeling these nonlinear computations: transfer learning from artificial neural networks trained on object recognition and data-driven convolutional neural network models trained end-to-end on large populations of neurons. Here, we test the ability of both approaches to predict spiking activity in response to natural images in V1 of awake monkeys. We found that the transfer learning approach performed similarly well to the data-driven approach and both outperformed classical linear-nonlinear and wavelet-based feature representations that build on existing theories of V1. Notably, transfer learning using a pre-trained feature space required substantially less experimental time to achieve the same performance. In conclusion, multi-layer convolutional neural networks (CNNs) set the new state of the art for predicting neural responses to natural images in primate V1 and deep features learned for object recognition are better explanations for V1 computation than all previous filter bank theories. This finding strengthens the necessity of V1 models that are multiple nonlinearities away from the image domain and it supports the idea of explaining early visual cortex based on high-level functional goals.
Deep neural networks (DNN) have set new standards at predicting responses of neural populations to visual input. Most such DNNs consist of a convolutional network (core) shared across all neurons which learns a representation of neural computation in visual cortex and a neuron-specific readout that linearly combines the relevant features in this representation. The goal of this paper is to test whether such a representation is indeed generally characteristic for visual cortex, i.e. generalizes between animals of a species, and what factors contribute to obtaining such a generalizing core. To push all non-linear computations into the core where the generalizing cortical features should be learned, we devise a novel readout that reduces the number of parameters per neuron in the readout by up to two orders of magnitude compared to the previous state-of-the-art. It does so by taking advantage of retinotopy and learns a Gaussian distribution over the neuron’s receptive field position. With this new readout we train our network on neural responses from mouse primary visual cortex (V1) and obtain a gain in performance of 7% compared to the previous state-of-the-art network. We then investigate whether the convolutional core indeed captures general cortical features by using the core in transfer learning to a different animal. When transferring a core trained on thousands of neurons from various animals and scans we exceed the performance of training directly on that animal by 12%, and outperform a commonly used VGG16 core pre-trained on imagenet by 33%. In addition, transfer learning with our data-driven core is more data-efficient than direct training, achieving the same performance with only 40% of the data. Our model with its novel readout thus sets a new state-of-the-art for neural response prediction in mouse visual cortex from natural images, generalizes between animals, and captures better characteristic cortical features than current task-driven pre-training approaches such as VGG16.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.