Salinity is a serious issue for crops, as it causes remarkable yield losses. The accumulation of Na+ affects plant physiology and produces nutrient imbalances. Plants trigger signaling cascades in response to stresses in which phytohormones and Ca2+ are key components. Cation/H+ exchangers (CAXs) transporters are involved in Ca2+ fluxes in cells. Thus, enhanced CAX activity could improve tolerance to salinity stress. Using the TILLING (targeting induced local lesions in genomes) technique, three Brassica rapa mutants were generated through a single amino acidic modification in the CAX1a transporter. We hypothesized that BraA.cax1a mutations could modify the hormonal balance, leading to improved salinity tolerance. To test this hypothesis, the mutants and the parental line R-o-18 were grown under saline conditions (150 mM NaCl), and leaf and root biomass, ion concentrations, and phytohormone profile were analyzed. Under saline conditions, BraA.cax1a-4 mutant plants increased growth compared to the parental line, which was associated with reduced Na+ accumulation. Further, it increased K+ concentration and changed the hormonal balance. Specifically, our results show that higher indole-3-acetic acid (IAA) and gibberellin (GA) concentrations in mutant plants could promote growth under saline conditions, while abscisic acid (ABA), ethylene, and jasmonic acid (JA) led to better signaling stress responses and water use efficiency. Therefore, CAX1 mutations directly influence the hormonal balance of the plant controlling growth and ion homeostasis under salinity. Thus, Ca2+ signaling manipulation can be used as a strategy to improve salinity tolerance in breeding programs.
Enhanced suberin1 (ESB1) is a protein whose mutation is correlated with an increase in root suberin and altered nutrient concentrations. Here, we show a physiological and histological characterization of esb1 mutant plants of Brassica rapa L. Therefore, the potential use of this mutant in selenium (Se) biofortification and/or cadmium (Cd) phytoremediation programs was also evaluated by applying 20 μM of Na2SeO4 and 0.49 μM of CdCl2 to a nutrient solution. With respect to wild type (WT) plants, an increase in root suberin was observed in esb1 at the level of the exodermis. This increase in root suberin did not affect photosynthesis performance. However, the esb1 mutant showed an increase in transpiration rate and a decrease in water use efficiency. Additionally, root histological changes affected the transport and concentration of some mineral elements. Thus, our results suggest that esb1 mutants of B. rapa would not be useful for Se biofortification because no significant differences were observed between the two genotypes at the leaf level. Nevertheless, the esb1 mutant reduced Cd translocation to the leaves and increased Fe and Cu uptake, so ESB1 mutation could be useful for Cd phytoremediation and Fe and Cu biofortification, although further research is needed. Therefore, this study provides detailed information on the effect of ESB1 mutation in B. rapa and suggests its potential use in biofortification and phytoremediation programs.
Green asparagus (Asparagus officinalis L.) is a widely grown and consumed crop which provides high-level nutritional interest. In recent years, the decline syndrome in asparagus plantations has been rapidly augmenting. This syndrome causes the early death of whole plants, also negatively affecting the new replanting. Decline causes notable economic losses in the sector. The objective of this work was to verify the effect of different treatments against asparagus decline syndrome on the physiological parameters and nutritional quality of the spears. To meet the objective, four different treatments were applied to asparagus plots strongly affected by decline syndrome: (T1) untreated control soil, (T2) biofumigation with Brassica pellets, (T3) biofumigation with chicken manure pellets, and (T4) disinfestation of the soil with Dazomet. The cumulative yield and physiological and quality parameters of green asparagus spears were studied. Thus, malondialdehyde (MDA), photosynthetic pigments, glutathione (GSH), ascorbate (AsA), total phenols, flavonoids, anthocyanin, antioxidant test, mineral nutrients, and the amino acid profile were measured on asparagus spears. The results showed that the Brassica pellets and Dazomet treatments were the most effective against the damage caused by the decline syndrome. However, it would be necessary to monitor the evolution in the following years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.