No abstract
We present a complete analysis of the cosmological constraints on decaying dark matter. Previous analyses have used the cosmic microwave background and Type Ia supernova. We have updated them with the latest data as well as extended the analysis with the inclusion of Lyman-α forest, large scale structure and weak lensing observations. Astrophysical constraints are not considered in the present paper. The bounds on the lifetime of decaying dark matter are dominated by either the late-time integrated Sachs-Wolfe effect for the scenario with weak reionization, or CMB polarization observations when there is significant reionization. For the respective scenarios, the lifetimes for decaying dark matter are Γ −1 100 Gyr and (f Γ) −1 5.3 × 10 8 Gyr (at 95.4% confidence level), where the phenomenological parameter f is the fraction of the decay energy deposited in baryonic gas. This allows us to constrain particle physics models with dark matter candidates through investigation of dark matter decays into Standard Model particles via effective operators. For decaying dark matter of ∼ 100 GeV mass, we found that the size of the coupling constant in the effective dimension-4 operators responsible for dark matter decay has to generically be 10 −22 . We have also explored the implications of our analysis for representative models in theories of gauge-mediated supersymmetry breaking, minimal supergravity and little Higgs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.