Unfolded states of proteins and native states of intrinsically disordered proteins (IDPs) populate heterogeneous conformational ensembles in solution. The average sizes of these heterogeneous systems, quantified by the radius of gyration (R G ), can be measured by small-angle X-ray scattering (SAXS). Another parameter, the mean dye-to-dye distance (R E ) for proteins with fluorescently labeled termini, can be estimated using single-molecule Förster resonance energy transfer (smFRET). A number of studies have reported inconsistencies in inferences drawn from the two sets of measurements for the dimensions of unfolded proteins and IDPs in the absence of chemical denaturants. These differences are typically attributed to the influence of fluorescent labels used in smFRET and to the impact of high concentrations and averaging features of SAXS. By measuring the dimensions of a collection of labeled and unlabeled polypeptides using smFRET and SAXS, we directly assessed the contributions of dyes to the experimental values R G and R E . For chemically denatured proteins we obtain mutual consistency in our inferences based on R G and R E , whereas for IDPs under native conditions, we find substantial deviations. Using computations, we show that discrepant inferences are neither due to methodological shortcomings of specific measurements nor due to artifacts of dyes. Instead, our analysis suggests that chemical heterogeneity in heteropolymeric systems leads to a decoupling between R E and R G that is amplified in the absence of denaturants. Therefore, joint assessments of R G and R E combined with measurements of polymer shapes should provide a consistent and complete picture of the underlying ensembles.single-molecule FRET | intrinsically disordered proteins | denatured-state ensemble | protein folding | polymer theory Q uantitative characterizations of the sizes, shapes, and amplitudes of conformational fluctuations of unfolded proteins under denaturing and native conditions are directly relevant to advancing our understanding of the collapse transition during protein folding. These types of studies are also relevant to furthering our understanding of the functions and interactions of intrinsically disordered proteins (IDPs) in physiologically relevant conditions (1). Polymer physics theories provide the conceptual foundations for analyzing conformationally heterogeneous systems such as IDPs and unfolded ensembles of autonomously foldable proteins (2-4). Specifically, order parameters in theories of coil-toglobule transitions and analytical descriptions of conformational ensembles (5, 6) are based on ensemble-averaged values of radii of gyration (R G ) and amplitudes of fluctuations measured by end-toend distances (R E ).Estimates of R G are accessible through small-angle X-ray scattering (SAXS) measurements because scattering intensities are directly related to the global protein size (Fig. 1) (7, 8). At finite concentrations, assuming the absence of intermolecular interactions, R G is proportional to the square root o...
Long-range correlated motions in proteins are candidate mechanisms for processes that require information transfer across protein structures, such as allostery and signal transduction. However, the observation of backbone correlations between distant residues has remained elusive, and only local correlations have been revealed using residual dipolar couplings measured by NMR spectroscopy. In this work, we experimentally identified and characterized collective motions spanning four β-strands separated by up to 15 Å in ubiquitin. The observed correlations link molecular recognition sites and result from concerted conformational changes that are in part mediated by the hydrogen-bonding network.
Structural conversion of the presynaptic, intrinsically disordered protein α-synuclein into amyloid fibrils underlies neurotoxicity in Parkinson's disease. The detailed mechanism by which this conversion occurs is largely unknown. Here, we identify a discrete pattern of transient tertiary interactions in monomeric α-synuclein involving amino acid residues that are, in the fibrillar state, part of β-strands. Importantly, this pattern of pairwise interactions does not correspond to that found in the amyloid state. A redistribution of this network of fibril-like contacts must precede aggregation into the amyloid structure.
We present here the characterization of the structural, dynamics, and energetics of properties of the urea-denatured state of ubiquitin, a small prototypical soluble protein. By combining state-of-the-art molecular dynamics simulations with NMR and small-angle X-ray scattering data, we were able to: (i) define the unfolded state ensemble, (ii) understand the energetics stabilizing unfolded structures in urea, (iii) describe the dedifferential nature of the interactions of the fully unfolded proteins with urea and water, and (iv) characterize the early stages of protein refolding when chemically denatured proteins are transferred to native conditions. The results presented herein are unique in providing a complete picture of the chemically unfolded state of proteins and contribute to deciphering the mechanisms that stabilize the native state of proteins, as well as those that maintain them unfolded in the presence of urea.denaturing mechanism | protein unfolding | random coil | ensemble simulation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.