With the increasing application of Linked Open Data, assessing the quality of datasets by computing quality metrics becomes an issue of crucial importance. For large and evolving datasets, an exact, deterministic computation of the quality metrics is too time consuming or expensive. We employ probabilistic techniques such as Reservoir Sampling, Bloom Filters and Clustering Coefficient estimation for implementing a broad set of data quality metrics in an approximate but sufficiently accurate way. Our implementation is integrated in the comprehensive data quality assessment framework Luzzu. We evaluated its performance and accuracy on Linked Open Datasets of broad relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.