Adsorption sites of molecules critically determine the electric/photonic properties and the stability of heterogeneous molecule-metal interfaces. Then, selectivity of adsorption site is essential for development of the fields including organic electronics, catalysis, and biology. However, due to current technical limitations, site-selectivity, i.e., precise determination of the molecular adsorption site, remains a major challenge because of difficulty in precise selection of meaningful one among the sites. We have succeeded the single site-selection at a single-molecule junction by performing newly developed hybrid technique: simultaneous characterization of surface enhanced Raman scattering (SERS) and current-voltage (I-V) measurements. The I-V response of 1,4-benzenedithiol junctions reveals the existence of three metastable states arising from different adsorption sites. Notably, correlated SERS measurements show selectivity toward one of the adsorption sites: "bridge sites". This site-selectivity represents an essential step toward the reliable integration of individual molecules on metallic surfaces. Furthermore, the hybrid spectro-electric technique reveals the dependence of the SERS intensity on the strength of the molecule-metal interaction, showing the interdependence between the optical and electronic properties in single-molecule junctions.
Citation for published item:wil nD h vid gF nd elEyw ediD yd y eF nd yerthelD w rieEghristine nd w rqu¡ esEqonz¡ lezD nti go nd frookeD i h rd tF nd fry eD w rtin F nd ge D il r nd perrerD t ime nd rigginsD imon tF nd v m ertD golin tF nd vowD ul tF nd solt w nriqueD h vid nd w rtinD nti go nd xi holsD i h rd tF nd hw rz herD lther nd q r ¡ % E u¡ rezD ¡ % tor wF @PHITA 9 olvent dependen e of the single mole ule ondu t n e of oligoyneE sed mole ul r wiresF9D tourn l of physi l hemistry gFD IPH @PWAF ppF ISTTTEISTURF Further information on publisher's website:This document is the Accepted Manuscript version of a Published Work that appeared in nal form in The Journal of Physical Chemistry C, copyright c American Chemical Society after peer review and technical editing by the publisher. To access the nal edited and published work see http://dx.doi.org/10.1021/acs.jpcc.5b08877. Additional information:Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
The increasing difficulties of meeting ‘Moore’s Law’ rates of progress in conventional semiconductor electronics, coupled with the advent of methods capable of measuring the electronic properties of single molecules in a laboratory setting, have seen a surge of activity in the field of molecular electronics over the last decade. However, the concepts of molecular electronics are far from new, and the basic premise and ideas of molecular electronics have been shadowing those of solid-state semiconductor electronics since the middle of the 20th century. In this Primer Review, we introduce the topic of molecular electronics, drawing on some of the earliest expressions of the fundamental concepts, and summarizing key concepts to provide the interested reader with an entry to this fascinating field of science and emerging technology.
Aromaticity is a fundamental concept in chemistry. It is described by Hückel’s rule that states that a cyclic planar π-system is aromatic when it shares 4n+2 π-electrons and antiaromatic when it possesses 4n π-electrons. Antiaromatic compounds are predicted to exhibit remarkable charge transport properties and high redox activities. However, it has so far only been possible to measure compounds with reduced aromaticity but not antiaromatic species due to their energetic instability. Here, we address these issues by investigating the single-molecule charge transport properties of a genuinely antiaromatic compound, showing that antiaromaticity results in an order of magnitude increase in conductance compared with the aromatic counterpart. Single-molecule current–voltage measurements and ab initio transport calculations reveal that this results from a reduced energy gap and a frontier molecular resonance closer to the Fermi level in the antiaromatic species. The conductance of the antiaromatic complex is further modulated electrochemically, demonstrating its potential as a high-conductance transistor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.