The variant form of human xeroderma pigmentosum syndrome (XPV) is caused by a deficiency in DNA polymerase η (Pol η) that enables replication through sunlight-induced pyrimidine dimers. We report high-resolution crystal structures of human Pol η at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol η acts like a molecular splint to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol η orthologs form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. Based on the structures, eight Pol η missense mutations causing XPV can be rationalized as undermining the “molecular splint” or perturbing the active-site alignment. The structures also shed light on the role of Pol η in replicating through D loop and DNA fragile sites.
Nuclear processes such as transcription, DNA replication, and recombination are dynamically regulated by chromatin structure. Transcription is known to be regulated by chromatin-associated proteins containing conserved protein domains that specifically recognize distinct covalent posttranslational modifications on histones. However, it has been unclear whether similar mechanisms are involved in mammalian DNA recombination. Here, we show that RAG2 -an essential component of the RAG1/2 V(D)J recombinase, that mediates antigen receptor gene assembly 1 -contains a plant homeodomain (PHD) finger that specifically recognizes histone H3 trimethylated at lysine 4 (H3K4me3). The high-resolution crystal structure of the RAG2 PHD finger bound to H3K4me3 reveals the molecular basis of H3K4me3-recognition by RAG2. Mutations that abrogate RAG2's recognition of H3K4me3 severely impair V(D)J recombination in vivo. Reducing the level of H3K4me3 similarly leads to a decrease in V(D)J recombination in vivo. Notably, a conserved tryptophan residue (W453) that constitutes a key structural component of the K4me3-binding surface and is essential for RAG2's recognition of H3K4me3 is mutated in patients with immunodeficiency syndromes. Together our results identify a novel function for histone methylation in mammalian DNA recombination. Furthermore, our results provide the first evidence suggesting that disrupting the read-out of histone modifications can cause an inherited human disease. +To whom correspondence should be addressed: oettinger@frodo.mgh.harvard.edu; ogozani@stanford.edu. * These authors contributed equally to the work Note added in proof: While this work was under review, another study also reported that the RAG2 PHD finger binds to methylated H3K4 30 .Atomic coordinates and structure factors of the RAG2 PHD -H3K4me3 peptide complex have been deposited in the Protein Data Bank with the accession code of 2v89. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.Supplementary Information is linked to the online version of the paper at www.nature.com/nature. Since RAG2 contains a noncanonical plant homeodomain (PHD) finger 6,7 -a module that can mediate interactions with chromatin 8-10 -we asked whether a polypeptide encompassing the RAG2 PHD finger (RAG2 PHD : aa 414-527) can recognize modified histone proteins. In an in vitro screen of peptide microarrays containing ~70 distinct modified histone peptides, we found that RAG2 PHD specifically binds to histone H3 trimethylated at lysine 4 (H3K4me3) ( Fig. 1a ; Fig. S1; data not shown). The specificity of this interaction was confirmed by peptide pulldown assays ( Fig. 1b ; Fig. S2; Fig. S3). RAG2 has a C-terminal extension of 40 aa that is essential for phosphoinositide (PtdInsP)-binding 7 (aa 488-527), but this region is dispensable for H3K4me3-binding as the minimal PHD finger alone (aa 414-487) is sufficient for H3K4me3-recognition (Fig. 1c). In addition, the acidic hinge region of RAG2 (aa 388-412), previously implicated in...
MutL assists the mismatch recognition protein MutS to initiate and coordinate mismatch repair in species ranging from bacteria to humans. The MutL N-terminal ATPase domain is highly conserved, but the C-terminal region shares little sequence similarity among MutL homologs. We report here the crystal structure of the Escherichia coli MutL C-terminal dimerization domain and the likelihood of its conservation among MutL homologs. A 100-residue proline-rich linker between the ATPase and dimerization domains, which generates a large central cavity in MutL dimers, tolerates sequence substitutions and deletions of one-third of its length with no functional consequences in vivo or in vitro. Along the surface of the central cavity, residues essential for DNA binding are located in both the N- and C-terminal domains. Each domain of MutL interacts with UvrD helicase and is required for activating the helicase activity. The DNA-binding capacity of MutL is correlated with the level of UvrD activation. A model of how MutL utilizes its ATPase and DNA-binding activities to mediate mismatch-dependent activation of MutH endonuclease and UvrD helicase is proposed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.