Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy.
The accumulation of proline (Pro) in plants exposed to biotic/abiotic stress is a well-documented and conserved response in most vegetal species. Stress conditions induce the overproduction of reactive oxygen species which can lead to cellular damage. In vitro assays have shown that enzyme inactivation by hydroxyl radicals (·OH) can be avoided in presence of Pro, suggesting that this amino acid could act as an ·OH scavenger. We applied Density Functional Theory coupled with a polarizable continuum model to elucidate how Pro reacts with ·OH. In this work we suggest that Pro reacts favourably with ·OH by H–abstraction on the amine group. This reaction produces the spontaneous decarboxylation of Pro leading to the formation of pyrrolidin-1-yl. In turn, pyrrolidin-1-yl can easily be converted to Δ1-pyrroline, the substrate of the enzyme Δ1-pyrroline dehydrogenase, which produces γ-aminobutyric acid (GABA). GABA and Pro are frequently accumulated in stressed plants and several protective roles have been assigned to these molecules. Thereby we present an alternative non-enzymatic way to synthetize GABA under oxidative stress. Finally this work sheds light on a new beneficial role of Pro accumulation in the maintenance of photosynthetic activity.
The accumulation of proline (Pro) and overproduction of reactive oxygen species (ROS) by plants exposed to stress is well-documented. In vitro assays show that enzyme inactivation by hydroxyl radicals ((•)OH) can be avoided in the presence of Pro, suggesting this amino acid might act as a (•)OH scavenger. Although production of hydroxyproline (Hyp) has been hypothesized in connection with such antioxidant activity, no evidence on the detailed mechanism of scavenging has been reported. To elucidate whether and how Hyp might be produced, we used density functional theory calculations coupled to a polarizable continuum model to explore 27 reaction channels including H-abstraction by (•)OH and (•)OH/H2O addition. The structure and energetics of stable species and transition states for each reaction channel were characterized at the PCM-(U)M06/6-31G(d,p) level in aqueous solution. Evidence is found for a main pathway in which Pro scavenges (•)OH by successive H-abstractions (ΔG(‡,298) = 4.1 and 7.5 kcal mol(-1)) to yield 3,4-Δ-Pro. A companion pathway with low barriers yielding Δ(1)-pyrroline-5-carboxylate (P5C) is also supported, linking with 5-Hyp through hydration. However, this connection remains unlikely in stressed plants because P5C would be efficiently recycled to Pro (contributing to its accumulation) by P5C reductase, hypothesis coined here as the "Pro-Pro cycle".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.