The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel widely distributed in the central nervous system, mainly in the hippocampus and cortex. The enhancement of its activity by positive allosteric modulators (PAMs) is a promising therapeutic strategy for cognitive deficits and neurodegenerative disorders. With the aim of developing novel scaffolds with PAM activity, we designed and synthesized a series of phosphonate-functionalized 1,4-disubstituted 1,2,3-triazoles using supported copper nanoparticles as the cycloaddition reaction catalyst and evaluated their activity on α7 receptors by single-channel and whole-cell recordings. We identified several triazole derivatives that displayed PAM activity, with the compound functionalized with the methyl phosphonate group being the most efficacious one. At the macroscopic level, α7 potentiation was evidenced as an increase of the maximal currents elicited by acetylcholine with minimal effects on desensitization, recapitulating the actions of type I PAMs. At the single-channel level, the active compounds did not affect channel amplitude but significantly increased the duration of channel openings and activation episodes. By using chimeric and mutant α7 receptors, we demonstrated that the new α7 PAMs share transmembrane structural determinants of potentiation with other chemically nonrelated PAMs. To gain further insight into the chemical basis of potentiation, we applied structure−activity relationship strategies involving modification of the chain length, inversion of substituent positions in the triazole ring, and changes in the aromatic nucleus. Our findings revealed that the phosphonate-functionalized 1,4-disubstituted 1,2,3-triazole is a novel pharmacophore for the development of therapeutic agents for neurological and neurodegenerative disorders associated with cholinergic dysfunction.
Background: 1α,25-dihydroxyvitamin D3 (calcitriol) shows potent growth-inhibitory properties on different can-cer cell lines but its hypercalcemic effects have severely hampered its therapeutic application. Therefore, it is important todevelop synthetic calcitriol analogues that retain or even increase its antitumoral effects and lack hypercalcemic activity. Based on previous evidence of the potent antitumor effects of the synthetic alkynylphosphonate EM1 analogue, we have now synthesized a derivative called SG. Objective: The aim of the present work is to evaluate the calcemic activity and the antitumor effect of SG, comparing these effects with those exerted by calcitriol and with those previously published for EM1. In addition, we propose to analyse by in silico studies the chemical structure-biological function relationship of these molecules. Methods: We performed the synthesis of vinylphosphonate SG analogue; in vitro assays on different cancer cell lines; in vivo assays on mice; and in silico assays applying computational molecular modelling. Results: The SG compound lacks hypercalcemic activity, similar to the parent compound EM1. However, the antitumor ac-tivity was blunted, as no antiproliferative or antimigratory effects were observed. By in silico assays, we demostrated that SG analogue has lower affinity for the VDR-ligand binding domain than EM1 compound, due to lack of interaction with the important residues His305 and His397. Conclusion: These results demonstrate that chemical modification in the lateral side chain of the SG analogue affects the antitumoral activity observed previously for EM1 but does not affect the calcemic activity. These results contribute to the rational design and synthesis of novel calcitriol analogues.
Nicotinic acetylcholine receptors (nAChR) are ligand-gated ion channels formed by the assembly of five subunits. Receptor activity could be subjected to both positive and negative modulation at allosteric sites by endogenous neurotransmitters as well as synthetic ligands such as steroids, bivalent cations, alcohols, and a range of drugs. The subtype of α7 nAChR has been considered a potential therapeutic target for Alzheimer’s disease, schizophrenia and other neurological and psychiatric disorders. In this work we present the synthesis of a novel series of phosphonate-functionalized 1,4-disubstituted 1,2,3-triazoles with potential activity over α7 AChR. These compounds were synthetized through the copper-catalyzed Huisgen 1,3-dipolar cycloaddition of organic azides and alkynes. Copper nanoparticles (CuNPs) immobilized on different supports were prepared using the CuCl2-Li-DTBB reducing system previously reported by our group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.